Exponent Rules/Properties

$x^m \cdot x^n =$	$-\frac{x^m}{x^n} =$		
$(x^m)^n = $	$x^{0} = $		
<i>x</i> ¹ =	If $x^m = x^n$, then		
<i>x^r</i> =	$(xy)^m = $		
$\left(\frac{x}{y}\right)^m =$	$x^{-m} = $		
$\frac{1}{x^{-m}} = \underline{\qquad}$	$\left(\sqrt[n]{x}\right)^m = $		
<i>e</i> =	e is like π , it is a decimal that goes on forever, it is irrational		
Scientific notation:	, where 0 < <i>a</i> < 10		
If base is 10, then positive exponent moves decimal to the			
If base is 10, then negative exponent moves decimal to the			
$a^{\log_a m} = $ since they are inverses of each other.			

Exponent Rules/Properties

$x^m \cdot x^n = $	$\frac{x^m}{x^n} = \underline{\qquad}$		
$(x^m)^n = $	$x^0 = $		
<i>x</i> ¹ =	If $x^m = x^n$, then		
$x^r = $	$(xy)^m = $		
$\left(\frac{x}{y}\right)^m = $	$x^{-m} =$		
$\frac{1}{x^{-m}} = \underline{\qquad}$	$\left(\sqrt[n]{x}\right)^m = $		
$e = $ e is like π , it is a decimal that	t goes on forever, it is irrational		
Scientific notation:, where 0	< <i>a</i> < 10		
If base is 10, then positive exponent moves decimal to the			
If base is 10, then negative exponent moves decimal to the			
$a^{\log_a m} = $ since they are inverses of ea	ach other.		

Logarithm Rules/Properties

$\log_x(mn) = $	$\log_{\chi}\left(\frac{m}{n}\right) = $			
$\log_x(m^n) = _$	$\log_x 1 = $			
$\log_x x = $	If $\log_x m = \log_x n$, then			
$\log_x x^r = $	$\log_a(xy)^m = _$			
$\log_a \left(\frac{x}{y}\right)^m = $	$\log_x -m = $			
Natural logarithms =	$\log_e x = $			
Common logarithms =	$\log_{10} x =$			
$\log_a a^m =$ since they are inverses of each other.				
Change of base: is used to				
$\log_a b =$ or				

Logarithm Rules/Properties

$\log_x(mn) =$	$\log_{\chi}\left(\frac{m}{n}\right) = $			
$\log_x(m^n) = _$	$\log_x 1 = $			
$\log_x x = $	If $\log_x m = \log_x n$, then			
$\log_x x^r = $	$\log_a(xy)^m = _$			
$\log_a \left(\frac{x}{y}\right)^m = \underline{\qquad}$	$\log_x -m =$			
Natural logarithms =	$\log_e x = $			
Common logarithms =	$\log_{10} x = $			
$\log_a a^m =$ since they are inverses of each other.				
Change of base: is used to				
$\log_a b =$ or				