Parent Functions #8

Parent Functions #8

Key Features

Domain:	Positive:
Range:	Negative:
<i>x</i> -intercept(s):	Maximums /Minimums
y-intercept:	Symmetry:
Increasing:	End Behavior:
Decreasing:	$\lim_{x\to\infty}f(x) =$
Constant:	$\lim_{x\to\infty}f(x) =$
Euler's Number:	

Asymptote: _____

Transformation Equation: _____

Inverse function:

Steps for solving an exponential equation:

<u>Way 1</u>

- 1. get the bases the same
- If the bases are the same, then the exponents are the same.
 So set the exponents equal to each other
- 3. solve for the variable

EX. $\frac{1}{5} = 125^{x-2}$

<u>Way 2</u>

- 1. get the base and exponent by itself
- do inverse of exponential (write a log using "swirl")
- 3. solve for variable (round to the nearest ten-thousandth is typical)

EX. $15 = 3(2)^{x+2} - 1$

Steps for solving an exponential equation:

<u>Way 1</u>

- 1. get the bases the same
- If the bases are the same, then the exponents are the same.So set the exponents equal to each other
- 3. solve for the variable

EX. $\frac{1}{5} = 125^{x-2}$

<u>Way 2</u>

- 1. get the base and exponent by itself
- do inverse of exponential (write a log using "swirl")
- solve for variable (round to the nearest ten-thousandth is typical)

EX. $15 = 3(2)^{x+2} - 1$