Parent Functions \#8

Name of Graph: \qquad

Equation: \qquad

x	$f(x)$

\qquad Transformation Equation: \qquad

Inverse function:
$b=$
$c=$

$$
h=
$$

$$
k=
$$

Parent Functions \#8

Name of Graph: \qquad

Key Features

Equation: \qquad

x	$f(x)$

Domain:
Range:
x-intercept(s):
y-intercept:
Increasing:
Decreasing:
Constant:
Euler's Number:

Positive:
Negative:
Maximums /Minimums
Symmetry:
End Behavior:
$\lim _{x \rightarrow-\infty} f(x)=$ $\lim _{x \rightarrow \infty} f(x)=$
\qquad Transformation Equation: \qquad
Inverse function:

$$
b=
$$

$$
c=
$$

$$
h=
$$

$$
k=
$$

Steps for solving an exponential equation:

Way 1

1. get the bases the same
2. If the bases are the same, then the exponents are the same.

So set the exponents equal to each other
3. solve for the variable

EX. $\quad \frac{1}{5}=125^{x-2}$

Steps for solving an exponential equation:

Way 1

1. get the bases the same
2. If the bases are the same, then the exponents are the same.

So set the exponents equal to each other
3. solve for the variable

EX. $\quad \frac{1}{5}=125^{x-2}$

Way 2

1. get the base and exponent by itself
2. do inverse of exponential (write a log using "swirl")
3. solve for variable (round to the nearest ten-thousandth is typical)

EX. $\quad 15=3(2)^{x+2}-1$

Way 2

1. get the base and exponent by itself
2. do inverse of exponential (write a log using "swirl")
3. solve for variable (round to the nearest ten-thousandth is typical)

EX. $\quad 15=3(2)^{x+2}-1$

