Inverse Operations

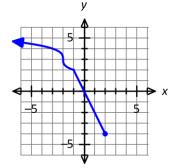
$$x \longleftrightarrow$$

$$x^2 \leftrightarrow$$

$$x^3 \longleftrightarrow$$

$$x^n \leftrightarrow$$

$$\chi^{\frac{m}{n}}\longleftrightarrow$$


$$\log_a m = n \longleftrightarrow$$

How to find the inverse of a table

x	f(x)
-10	1/4
.5	-1
1/2	5
6	2.3

x	$f^{-1}(x)$

How to find the inverse of a graph

Inverse Operations

$$+ \longleftrightarrow$$

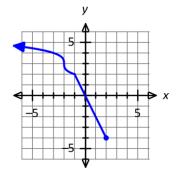
$$x \longleftrightarrow$$

$$x^2 \longleftrightarrow$$

$$x^3 \longleftrightarrow$$

$$x^n \leftrightarrow$$

$$\chi^{\frac{m}{n}} \longleftrightarrow$$


$$\log_a m = n \leftrightarrow$$

How to find the inverse of a table

x	f(x)
-10	1/4
.5	-1
1/2	5
6	2.3

х	$f^{-1}(x)$

How to find the inverse of a graph

Steps on how to find the inverse function

- 1. flip-flop x and y
- 2. Solve for *y*

EX.
$$f(x) = -6\sqrt[3]{4x - 1} + 8$$

How to prove 2 functions are inverses

- 1. Find f(g(x))
- 2. Find g(f(x))
- 3. If they both equal x, then they are inverses

EX.
$$f(x) = 4(x-3)^2 + 1$$

$$g(x) = \sqrt{\frac{x-1}{4}} + 3$$

Steps on how to find the inverse function

- 1. flip-flop x and y
- 2. Solve for *y*

EX.
$$f(x) = -6\sqrt[3]{4x - 1} + 8$$

How to prove 2 functions are inverses

- 1. Find f(g(x))
- 2. Find g(f(x))
- 3. If they both equal x, then they are inverses

EX.
$$f(x) = 4(x-3)^2 + 1$$

$$g(x) = \sqrt{\frac{x-1}{4}} + 3$$