Name of Graph: \qquad
Equation: \qquad

x	$f(x)$

Key Features

Domain:
Range:
x-intercept(s):
y-intercept:
Increasing:
Decreasing:
Constant:
Common log:
Natural log:

Positive:
Negative:
Maximums /Minimums
Symmetry:
End Behavior:

$$
\lim _{x \rightarrow-\infty} f(x)=
$$ $\lim _{x \rightarrow \infty} f(x)=$

Asymptote: \qquad
How to find domain:

Transformation general equation:
Inverse function:

Parent Functions \#9

Name of Graph: \qquad
Equation:

x	$f(x)$

Key Features

Domain:
Range:
x-intercept(s):
y-intercept:
Increasing:
Decreasing:
Constant:
Common log:
Natural log:

Asymptote: \qquad
How to find domain:

Transformation general equation:
Inverse function:

Steps for solving a logarithmic equation:

1. get the log by itself (you may need to use log properties to do this)
2. do inverse of logarithm (write an exponential using "swirl")
3. solve for variable (round to the nearest ten-thousandth is typical)
4. Check restrictions and for extraneous answers

EX. $\log _{3}(x-4)-\log _{3} x=\log _{3} 60$

Steps for solving a logarithmic equation:

1. get the log by itself (you may need to use log properties to do this)
2. do inverse of logarithm (write an exponential using "swirl")
3. solve for variable (round to the nearest ten-thousandth is typical)
4. Check restrictions and for extraneous answers

EX. $\log _{3}(x-4)-\log _{3} x=\log _{3} 60$

EX. $\quad 12=-\log _{3}(x-4)+3$

EX. $\log _{6}(x-5)+\log _{6}(x)=1$

EX. $\log _{6}(x-5)+\log _{6}(x)=1$

