Name of Graph: \qquad
Equation: \qquad

x	$f(x)$

Shape of Graph: \qquad
Vertex: \qquad
Standard form:

Key Features

Domain:
Range:
x-intercept(s):
y-intercept:
Increasing:
Decreasing:
Constant:

Inverse function:
Transformation general equation:
Vertex form:

Parent Function \#3

Name of Graph: \qquad
Equation:

x	$f(x)$

Key Features

Domain:
Range:
x-intercept(s):
y-intercept:
Increasing:
Decreasing:
Constant:

Positive:
Negative:
Maximums /Minimums
Symmetry:
End Behavior:
$\lim _{x \rightarrow-\infty} f(x)=$ $\lim _{x \rightarrow \infty} f(x)=$

Shape of Graph: \qquad
Vertex: \qquad
Standard form:

Inverse Function:
Transformation general equation:
Vertex form:

Steps for solving a quadratic equation:

Way 1 steps

1. Get the squared variable or parentheses by itself
2. Take the square root of both sides of the equation
**Don't' forget to put the \pm
3. Solve for the variable

EX. $12=2(4 x-1)^{2}-6$
EX. $6 x^{2}-6=5 x$

Way 2 steps

1. Set equation equal to 0 and put in standard form
2. Factor or use quadratic formula

$$
\text { Q.F.: } x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

3. If factoring then solve for the variable If using Q.F. then evaluate

EX. $2 x^{2}+5 x=4$

How to Find the Vertex:

Steps for solving a quadratic equation:

Way 1 steps

1. Get the squared variable or parentheses by itself
2. Take the square root of both sides of the equation
**Don't' forget to put the \pm
3. Solve for the variable

EX. $12=2(4 x-1)^{2}-6$
EX. $6 x^{2}-6=5 x$

Way 2 steps

1. Set equation equal to 0 and put in standard form
2. Factor or use quadratic formula

$$
\text { Q.F.: } \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

3. If factoring then solve for the variable If using Q.F. then evaluate

EX. $2 x^{2}+5 x=4$

