Parent Function #3

Key Features

Domain: Equation: _____ y Range: f(x)x *x*-intercept(s): y-intercept: Increasing: Decreasing: Constant:

Positive: Negative: Maximums /Minimums Symmetry: End Behavior: $\lim_{x\to\infty}f(x) =$ $\lim_{x\to\infty}f(x) =$

Shape of Graph: _____

Vertex:

Standard form:

Inverse Function:

Transformation general equation:

Vertex form:

Steps for solving a quadratic equation:

Way 1 steps

- 1. Get the squared variable or parentheses by itself
- 2. Take the square root of both sides of the equation
 - **Don't' forget to put the \pm
- 3. Solve for the variable

EX.
$$12 = 2(4x - 1)^2 - 6$$

Way 2 steps

- 1. Set equation equal to 0 and put in standard form
- 2. Factor or use quadratic formula

Q.F.:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

3. If factoring then solve for the variable If using Q.F. then evaluate

EX.
$$2x^2 + 5x = 4$$

How to Find the Vertex:

Steps for solving a quadratic equation:

Way 1 steps

- 1. Get the squared variable or parentheses by itself
- 2. Take the square root of both sides of the equation

**Don't' forget to put the \pm

3. Solve for the variable

EX. $12 = 2(4x - 1)^2 - 6$

EX. $6x^2 - 6 = 5x$

EX. $6x^2 - 6 = 5x$

Way 2 steps

- 1. Set equation equal to 0 and put in standard form
- 2. Factor or use quadratic formula

Q.F.:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

3. If factoring then solve for the variable If using Q.F. then evaluate

EX.
$$2x^2 + 5x = 4$$

How to Find the Vertex: