SLO	Trigonometry SLO Review	w
Name	Date	Period
Find the area of each trian nearest hundredths. Show 1. A = 52°, b = 14 m,	gle using the area formula $A = \frac{1}{2}ab$ co v work! c = 21 m 2. 9.1	bs <i>C</i> . Round answers to the

Use the Law of Sines to solve the triangle (round to the nearest tenths). Show work!

3. A = 50°, B = 62°, <i>a</i> = 4	$m \angle A = $	a =
	<i>m∠B</i> =	<i>b</i> =
	<i>m∠C</i> =	<i>c</i> =

4	
_	٠

$m \angle A = $	<i>a</i> =
$m \angle B = $	<i>b</i> =
<i>m∠C</i> =	<i>c</i> =

Use the Law of Cosines to solve each triangle (round to the nearest tenths). Show work!

Convert each angle from degrees to radians. Show work!

7. 150° 8. 75° 9. 310°

Convert each angle from radians to degrees. Show work! Round to the nearest tenth when necessary.

10.
$$\frac{\pi}{5}$$
 11. $\frac{3\pi}{8}$ 12. $\frac{12\pi}{5}$

Find all solutions in the interval $[0, 2\pi)$. (No decimals!)

13.
$$5 - 4\sin\theta - 9 = 0$$
 14. $2 = 2\tan\theta$

15.
$$1 - \frac{1}{4}\cos\theta = \frac{3}{4}$$
 16. $5 + \sin\theta = \frac{11}{2}$

17. Low tide is at 9:12 am and high tide is at 3:12 pm. The water level varies 48 inches between low and high tide. Write a cosine function to represent the change in water level. Show work!

18. Low tide is at 7:15 am and high tide is at 1:15 pm. The water level varies 52 inches between low and high tide. Write a cosine function to represent the change in water level. Show work!

19. You and a friend hike 1.3 kilometers due west from a campsite. At the same time, two other friends hike 1.7 kilometers at a heading of N17°W from the campsite. To the nearest tenth of a kilometer, how far apart are the two groups? Show work!

20. Two spaceship-lookout stations are 15 miles apart on opposite sides of a spaceship. The angle of elevation from station A to the ship is 35° and the angle of elevation from station B is 49° . Find the altitude of the spaceship. Draw a model, label, and show all work!

Fill in the blanks for each equation.

21. $f(\theta) = 4\sin 5(\theta - \pi) - 7$	22. $f(\theta) = 2 - 6\cos\frac{\theta}{3}$
Vertical Shift (d):	Vertical Shift (d):
Amplitude (a):	Amplitude (a):
Phase Shift (c):	Phase Shift (c):
b:	b:
Period:	Period:

Write an equation for each function graphed below.

If $f(x) = \sin^{-1}(x)$, determine the value of the following in <u>radians</u>. Answers must be acute angles, but can be positive or negative.

25.
$$f\left(\frac{\sqrt{3}}{2}\right)$$
 26. $f\left(-\frac{\sqrt{2}}{2}\right)$ 27. $f\left(-\frac{1}{2}\right)$ 28. $f\left(\frac{\sqrt{2}}{2}\right)$