Name \qquad Date \qquad Period \qquad
Find the area of each triangle using the area formula $A=\frac{1}{2} a b \cos C$. Round answers to the nearest hundredths. Show work!

1. $A=52^{\circ}, b=14 \mathrm{~m}, \mathrm{c}=21 \mathrm{~m}$
2.

Use the Law of Sines to solve the triangle (round to the nearest tenths). Show work!
3. $\mathrm{A}=50^{\circ}, \mathrm{B}=62^{\circ}, a=4$
$m \angle A=$ \qquad $a=$ \qquad
$m \angle B=$ \qquad $b=$ \qquad
$m \angle C=$ \qquad $c=$ \qquad
4.

$m \angle A=$ \qquad $a=$ \qquad
$m \angle B=$ \qquad $b=$ \qquad
$m \angle C=$ \qquad $c=$ \qquad

Use the Law of Cosines to solve each triangle (round to the nearest tenths). Show work!
5. $\mathrm{B}=35^{\circ}, a=43, \mathrm{c}=19$

$$
\begin{array}{ll}
m \angle A=\ldots & a= \\
m \angle B= & b= \\
m \angle C=\ldots & C=
\end{array}
$$

6.

$m \angle A=\ldots \quad a=$

$$
m \angle B=
$$

\qquad

$$
b=
$$

\qquad
$m \angle C=$ \qquad
\qquad

Convert each angle from degrees to radians. Show work!
7. 150°
8. 75°
9. 310°

Convert each angle from radians to degrees. Show work! Round to the nearest tenth when necessary.
10. $\frac{\pi}{5}$
11. $\frac{3 \pi}{8}$
12. $\frac{12 \pi}{5}$
13. $5-4 \sin \theta-9=0$
14. $2=2 \tan \theta$
15. $1-\frac{1}{4} \cos \theta=\frac{3}{4}$
16. $5+\sin \theta=\frac{11}{2}$
17. Low tide is at 9:12 am and high tide is at $3: 12 \mathrm{pm}$. The water level varies 48 inches between low and high tide. Write a cosine function to represent the change in water level. Show work!
18. Low tide is at 7:15 am and high tide is at 1:15 pm. The water level varies 52 inches between low and high tide. Write a cosine function to represent the change in water level. Show work!
19. You and a friend hike 1.3 kilometers due west from a campsite. At the same time, two other friends hike 1.7 kilometers at a heading of $\mathrm{N} 17^{\circ} \mathrm{W}$ from the campsite. To the nearest tenth of a kilometer, how far apart are the two groups? Show work!
20. Two spaceship-lookout stations are 15 miles apart on opposite sides of a spaceship. The angle of elevation from station A to the ship is 35° and the angle of elevation from station B is 49°. Find the altitude of the spaceship. Draw a model, label, and show all work!

Fill in the blanks for each equation.
21. $f(\theta)=4 \sin 5(\theta-\pi)-7$
22. $f(\theta)=2-6 \cos \frac{\theta}{3}$
Vertical Shift (d): \qquad Vertical Shift (d): \qquad
Amplitude (a): \qquad Amplitude (a): \qquad
Phase Shift (c): \qquad Phase Shift (c): \qquad
b: \qquad
Period: \qquad
b: \qquad
Period: \qquad

Write an equation for each function graphed below.
23.

24.

If $f(x)=\sin ^{-1}(x)$, determine the value of the following in radians. Answers must be acute angles, but can be positive or negative.
25. $f\left(\frac{\sqrt{3}}{2}\right)$
26. $f\left(-\frac{\sqrt{2}}{2}\right)$
27. $f\left(-\frac{1}{2}\right)$
28. $f\left(\frac{\sqrt{2}}{2}\right)$

