Objective:

A. Basic Properties of Exponents

1.	$b^{0}=1$	Zero Property	1) $11^{0}=$
$\text { \|\| } 2 .$	$b^{-n}=\frac{1}{b^{n}} \text { or } \frac{1}{b^{-n}}=b^{n}$	Negative Exponent Property	1) $5^{-3}=$ \qquad 2) $\frac{1}{2^{-3}}=$ \qquad $=$ \qquad 3) $\left(\frac{1}{6}\right)^{-2}$ \square 4) $9=3$ (\square t)
3.	$\left(b^{m}\right)\left(b^{n}\right)=b^{m+n}$	Product Rule	1) $x^{6} x^{8}=$
4.	$\frac{b^{m}}{b^{n}}=b^{m-n}$	Quotient Rule	1) $\frac{x^{4}}{x^{2}}=$ 2) $\frac{x^{6}}{x^{7}}=$ \qquad
5.	$\left(b^{m}\right)^{n}=b^{m \cdot n}$	Power to a Power Rule	1) $(4 x)^{2}=\square \quad$ 2) $4 x^{2}=$
6.	$a^{m / n}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}$	Positive Rational Exponents	1) $16^{\frac{3}{2}}=$ 2) $\frac{1}{8^{-\frac{4}{3}}}=$ \qquad

B. Write numbers as exponents.

Example: $9=3^{2}$ Hint: They all have more than one answer.	2. $4=$	2. $16=$	32 $=$	4. $27=$	$5.243=$
		6. $\frac{1}{25}=$	7. $\frac{1}{2}=$	$8 . \frac{1}{6^{x}}=$	$9.81=$

C. Same base

- In the expression, 5^{2} : $\mathbf{5}$ is the \qquad and $\mathbf{2}$ is the \qquad .
- If the bases of both sides of an exponential equation are the same:

$$
B^{m}=B^{n}
$$

then
the exponents are equal: $m=n$
D. Steps to Solve by changing the base

$$
\begin{aligned}
5^{3 \mathrm{x}} & =\frac{1}{125} & & \text { Given } \\
5^{3 \mathrm{x}} & =\frac{1}{5^{3}} & & \begin{array}{l}
\text { Express the denominator of the right side with a base } \\
\text { of } 5 . \text { We have } 125=5^{3} .
\end{array} \\
5^{3 \mathrm{x}} & =5^{-3} & & \begin{array}{l}
\text { Apply the Negative Exponent Property. } \\
\text { At this point, the bases are the same. } \\
\text { Set the exponents equal to each other. }
\end{array} \\
3 \mathrm{x} & =-3 & & \text { Solve for } \mathrm{x} . \\
\frac{p^{\mathrm{x} x}}{z^{\prime}} & =\frac{-3}{3} & & \text { To solve } \mathrm{x}, \text { divide both sides by } 3 . \text { That's it. } \\
\mathrm{x} & =-1 & &
\end{aligned}
$$

E. Examples

$1.4^{5}=4^{x}$	2. $7^{-3 x-5}=7^{2 x}$	$3.3^{-3 n}=243$
4. $5^{-3 x-3}=\frac{1}{625}$	$5.16^{m+1}=64$	6. $81^{m+2}=\frac{1}{9}$
7. $\left(\frac{1}{9}\right)^{-3 r-2}=27^{r}$	$8 . \frac{4^{-x}}{4^{5 x-2}}=32$	$9 . \frac{16}{2^{2 n+1}}=8$

