

Objective:

A. Basic Properties of Exponents

1.	b ^o = 1	Zero Property	1) $11^0 = $
2.	$b^{-n} = \frac{1}{b^n}$ or $\frac{1}{b^{-n}} = b^n$	Negative Exponent Property	1) $5^{-3} = $ 2) $\frac{1}{2^{-3}} = $ $= $ $= $ $= $ $= $ $= $ $= $ $= $
3.		Product Rule	1) $x^6 x^8 = $
4.	$\frac{b^{m}}{b^{n}} = b^{m-n}$	Quotient Rule	1) $\frac{x^4}{x^2} =$ 2) $\frac{x^6}{x^7} =$
	$(b^m)^n = b^m \cdot n$		1) $(4x)^2 =$ 2) $4x^2 =$
6.	$a^{m/n} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$	Positive Rational Exponents	1) $16^{\frac{3}{2}} =$ 2) $\frac{1}{8^{-\frac{4}{3}}} =$

B. Write numbers as exponents.

Example: $9=3^2$ Hint: They all have more than one answer.	1. 4 =	2. 16 =	3. 32 =	4. 27 =	5. 243 =
	$\frac{1}{25} =$	$\frac{1}{2} =$	$\frac{1}{6^x} =$	9. 81 =	$\frac{1}{7} =$

__.

C. Same base

- In the expression, 5²: 5 is the _____ and 2 is the _____
- If the *bases* of both sides of an exponential equation are the **same**:

$$B^m = B^n$$

then

D. Steps to Solve by changing the base

$5^{3x} = \frac{1}{125}$	Given
$5^{3x} = \frac{1}{5^3}$	Express the denominator of the right side with a base of 5. We have $125 = 5^3$.
5	Apply the Negative Exponent Property.
$5^{3x} = 5^{-3}$	At this point, the bases are the same. Set the exponents equal to each other.
3x = -3	Solve for x.
$\frac{\cancel{3}x}{\cancel{3}} = \frac{-3}{3}$ $x = -1$	To solve x, divide both sides by 3. That's it.

E. Examples

1. $4^5 = 4^x$	2. $7^{-3x-5} = 7^{2x}$	3. $3^{-3n} = 243$
1. $4^{*} = 4^{*}$	2. / 2. = / 2.	3. $3^{\text{m}} = 243$
4. $5^{-3x-3} = \frac{1}{625}$	5. $16^{m+1} = 64$	$c_{0,1}^{m+2}$ 1
4. 5 $=\frac{1}{625}$		6. $81^{m+2} = \frac{1}{9}$
025		,
$7.\left(\frac{1}{9}\right)^{-3r-2} = 27^r$	1-x	16
$7. \left(\frac{1}{r}\right) = 27^{r}$	8. $\frac{4^{-x}}{4^{5x-2}} = 32$	9. $\frac{16}{2^{2n+1}} = 8$
(9)	4^{3x-2}	2