Name \qquad Date \qquad Period \qquad

Review

Solve each equation.

1. $3 x-7=-5 x+9$
2. $x^{2}-5 x=14$
3. $3 x^{2}-16 x-12=0$
4. $\sqrt{x+9}-13=21$

Change each exponential statement into an equivalent statement involving a logarithm.
5. $7=x^{2}$
6. $2^{(-3)}=\frac{1}{8}$
7. $5^{x}=8.4$

Change each logarithmic statement to an equivalent statement involving an exponent.
9. $\log _{5} 125=3$
10. $\log _{8} 4=\frac{2}{3}$
11. $\log 6=x$
12. $\ln x=9$

Solve each equation. Leave answer as exact solutions. No calculators. Show work!
13. $\log _{2}(2 x+1)=3$
14. $\ln e^{x}=5$
15. $\log _{4} 64=x$
16. $\log _{3} 243=2 x+1$
17. $e^{2 x+5}=8$
19. $2 \cdot 10^{2-x}=5$
21. $\log _{3} x=-5$
23. $3^{2 x-5}=7$
22. $\log _{x} 49=2$
18. $\log _{2} 8^{x}=-3$
20. $4 \cdot e^{x+1}=5$
24. $10^{x}=e$

Applications

Compounded Interest: $A=P\left(1+\frac{r}{n}\right)^{n t} \quad \mathbf{P}=$ Initial amount or Principle, $\mathrm{r}=\mathrm{rate}, \mathrm{n}=$ number of times in a year, $\mathrm{t}=$ time in years, $A=$ the total amount with interest

Compounded Continuously Equation: $A=P e^{r t} \quad \mathbf{P}=$ Initial amount or Principle, $\mathrm{r}=$ rate, $\mathrm{t}=$ time in years, $\mathrm{A}=$ the total amount with interest
25. Jim places $\$ 1000$ in a bank account that pays 5.6% compounded continuously. After 1 year, will he have enough money to buy a computer system that costs $\$ 1060$? If another bank will pay Jim 5.9% compounded monthly, is this a better deal?
26. Jasmine deposits $\$ 520$ into a savings account that has a 3.5% interest rate compounded monthly. What will be the balance of Jasmine's savings account after two years?

