

| Name                  | Date               | Period |
|-----------------------|--------------------|--------|
| Review                |                    |        |
| Solve each equation.  |                    |        |
| 1. $3x - 7 = -5x + 9$ | 2. $x^2 - 5x = 14$ |        |
|                       |                    |        |

3.  $3x^2 - 16x - 12 = 0$ 4.  $\sqrt{x+9} - 13 = 21$ 

Change each exponential statement into an equivalent statement involving a logarithm.

5.  $7 = x^2$  6.  $2^{(-3)} = \frac{1}{8}$  7.  $5^x = 8.4$ 

Change each logarithmic statement to an equivalent statement involving an exponent.

9.  $\log_5 125 = 3$  10.  $\log_8 4 = \frac{2}{3}$  11.  $\log 6 = x$  12.  $\ln x = 9$ 

Solve each equation. Leave answer as exact solutions. No calculators. Show work!

**13.** 
$$\log_2(2x+1) = 3$$
 **14.**  $\ln e^x = 5$ 

**15**.  $\log_4 64 = x$ 

17. 
$$e^{2x+5} = 8$$
 18.  $\log_2 8^x = -3$ 

19. 
$$2 \cdot 10^{2-x} = 5$$
 20.  $4 \cdot e^{x+1} = 5$ 

21.  $\log_3 x = -5$ 

22.  $\log_x 49 = 2$ 

**23.**  $3^{2x-5} = 7$ 

24.  $10^x = e$ 

## Applications

Compounded Interest:  $A = P(1 + \frac{r}{n})^{nt}$  P = Initial amount or Principle, r = rate, n = number of times in a year, t = time in years, A = the total amount with interest

**Compounded Continuously Equation:**  $A = Pe^{rt}$  **P** = Initial amount or Principle, **r** = rate, **t** = time in years, **A** = the total amount with interest

25. Jim places \$1000 in a bank account that pays 5.6% compounded continuously. After 1 year, will he have enough money to buy a computer system that costs \$1060? If another bank will pay Jim 5.9% compounded monthly, is this a better deal?

**26.** Jasmine deposits \$520 into a savings account that has a 3.5% interest rate compounded monthly. What will be the balance of Jasmine's savings account after two years?