

Date:

Objective:

Properties of exponents	Properties of logarithms
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.
7.	7.
8.	8.

Example:

Simplfiy. Do not use a calculator.

- 1. $\log_4 1$ 2. $5^{\log_5 3}$ 3. $\log_7 7^{-3}$
- 4. $\ln e^5$ 5. $\log_2 64$ 6. $\log_7 \frac{1}{49}$

7. $\log \sqrt{10}$

Example:

Condense to one logarithm or simplify.

1. $\ln 8 + \ln x$	2. $\log u - \log v$	3. $\frac{1}{4}\log_6 x$
		4 1086 10

4. $3 \log_7 x + \log_7 4$

5. $5 \log 2 - \log 5x$

 $6. 4\ln(uv) - 3\ln(vw)$

7. $\log(x - 4) + \log(6x + 5)$

Example:

Expand or write with more than one logarithm.

1. $\log 5x$ 2. $\log \frac{5}{x}$ 3. $\log_7 x^5$

4.
$$\ln(x^2 e^x)$$
 5. $\log_6 \frac{\sqrt[4]{y}}{\sqrt[4]{x}}$

Change of base formula:

 $\log_b x = ___$

Example:

Write each logarithm using change of base formula. Then evaluate the logarithm rounding to the nearest ten-thousandth. Use common logarithms.

1. log₆ 9 2. log₆ 3.5

Example:

Write each logarithm using change of base formula. Then evaluate the logarithm rounding to the nearest ten-thousandth. Use natural logarithms.

 1. log₃ 8
 2. log₂ 4.12

Sometimes, when we substitute the given information into the equation the variable is in the exponent. When this happens, you need to use logarithms to solve for the variable.

Example:

1. The population of a bacteria can be modeled by $P(t) = 350(1.25)^t$. According to this model, when will the population be 800? Round to the nearest tenth of a day.

2. The value of a cell phone that is t years old can be modeled by $v(t) = 1,399(0.18)^t$. According to the model, when will the phone be worth \$300? Round to the nearest tenth of a year.