Date:
Objective:

Properties of exponents	Properties of logarithms
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.
7.	7.
8.	8.

Example:

Simplfiy. Do not use a calculator.

1. $\log _{4} 1$
2. $5^{\log _{5} 3}$
3. $\log _{7} 7^{-3}$
4. $\ln e^{5}$
5. $\log _{2} 64$
6. $\log _{7} \frac{1}{49}$
7. $\log \sqrt{10}$

Example:

Condense to one logarithm or simplify.

1. $\ln 8+\ln x$
2. $\log u-\log v$
3. $\frac{1}{4} \log _{6} x$
4. $3 \log _{7} x+\log _{7} 4$
5. $5 \log 2-\log 5 x$
6. $4 \ln (u v)-3 \ln (v w)$
7. $\log (x-4)+\log (6 x+5)$

Example:
Expand or write with more than one logarithm.

1. $\log 5 x$
2. $\log \frac{5}{x}$
3. $\log _{7} x^{5}$
4. $\ln \left(x^{2} e^{x}\right)$
5. $\log _{6} \frac{\sqrt[4]{y}}{\sqrt[4]{x}}$

Change of base formula:

$\log _{b} x=\ldots=$ \qquad

Example:
Write each logarithm using change of base formula. Then evaluate the logarithm rounding to the nearest ten-thousandth. Use common logarithms.

1. $\log _{6} 9$
2. $\log _{6} 3.5$

Example:
Write each logarithm using change of base formula. Then evaluate the logarithm rounding to the nearest ten-thousandth. Use natural logarithms.

1. $\log _{3} 8$
2. $\log _{2} 4.12$

Sometimes, when we substitute the given information into the equation the variable is in the exponent. When this happens, you need to use logarithms to solve for the variable.

Example:

1. The population of a bacteria can be modeled by $P(t)=350(1.25)^{t}$. According to this model, when will the population be 800 ? Round to the nearest tenth of a day.
2. The value of a cell phone that is t years old can be modeled by $v(t)=1,399(0.18)^{t}$. According to the model, when will the phone be worth $\$ 300$? Round to the nearest tenth of a year.
