11.7

Date:

Objective:

A. Review

1) $\log _{3} x=4$

$$
\text { 2) } 27\left(\frac{1}{3}\right)^{x / 5}=3
$$

3) $16 \cdot 4^{x / 3}=1024$
B. Use the Properties of Logarithms and Exponents to solve equations.

- To avoid extraneous solutions, determine the domain of the variable first.
- Use the properties of logarithms and exponents to manipulate the equations.
- Try rewriting as an exponential or logarithmic function: $y=\log _{a} x \Leftrightarrow x=a^{y}$
- Remember the properties: $\log _{a} M=\log _{a} N \Leftrightarrow M=N$ and $a^{u}=a^{v} \Leftrightarrow u=v$ (Make the bases the same).
- Check your solution by substituting into the original equation.
a) $2.05^{x}=4.36$
b) $30 e^{0.014 x}=600$
c) $8-5 e^{-x}=-12$
d) $2^{4-x}-7=14$
e) $\ln x=8$
f) $-4 \log (x+5)-3=-4$
g) $\log x=\log _{4} 9$
h) $\log _{4} x=\log _{4}(3 x-8)$
i) $\log _{3}(2 x+5)+\log _{3} 27=5$
j) $3 \log _{2}(x-1)+\log _{2} 4=5$
k) $3 \log _{2}(x-1)+\log _{2} 4=5$
I) $\ln (5 x)-\ln (10)=5$
m) $\log _{6}(x+4)+\log _{6}(x+3)=1$
n) $\log _{2} x+\log _{2}(x-2)=\log _{2}(x+4)$

Exponential Growth and Decay Models

Law of Uninhibited Growth or Decay:

Many natural phenomena have been found to follow the law that an amount A varies with time t according to the function $A(t)=A_{0} e^{k t}$, where A_{0} is the original amount at time $t=0$ and k is a constant of growth or decay (growth if $k>0$, decay if $k<0$.)

Example: The number N of bacteria present in a culture at time t hours obeys the law of uninhibited growth where $N(t)=1000 e^{0.01 t}$.
a) Determine the number of bacteria at $t=0$ hours.
b) What is the growth rate of the bacteria?
c) What will the population be after 4 hours?
d) When will the number of bacteria reach 1700 ?
e) When will the number of bacteria double?

Example: lodine 131 is a radioactive material that decays according to the function $A(t)=A_{0} e^{-0.087 t}$, where A_{0} is the initial amount present and A is the amount present at time t (in days). Assume that a scientist has a sample of 100 grams of iodine 131.
a) What is the decay rate of iodine 131 ?
b) How much iodine 131 is left after 9 days?
c) When will 70 grams of iodine 131 be left?
d) What is the half-life of iodine 131 ? (when $A=\frac{1}{2} A_{0}$.)

