\qquad Date \qquad Period \qquad

Find the exact solution algebraically. DO NOT use logarithms to solve! Show work!

1. $32\left(\frac{1}{4}\right)^{x / 3}=2$
2. $2 \cdot 5^{x / 4}=250$
3. $3\left(5^{-x / 4}\right)=15$

Solve each equation. Write the exact answer and if necessary, obtain a numerical approximation for your solution by rounding to the nearest ten thousandths. Show work!
4. $1.08^{x}=6.45$
5. $3^{x}=25$
6. $40 e^{0.025 x}=200$
7. $7-4 e^{-x}=-5$
8. $5^{x+3}=30$
9. $4^{5-x}-2=13$
10. $9^{(x-4)}+2=5$
11. $\ln x=6$
12. $\log x=4$
13. $\log _{3}(x+2)=2$
14. $3 \ln (x-2)+6=7$
15. $3-\log (x+3)=4$
16. $\log _{3} x=\log _{3} 7$
17. $\log _{5} x=\log _{5}(2 x-3)$
18. $\log _{3}(3 x-2)=3$
19. $\log _{2}(x+2)+\log _{2}(x+4)=3$
20. $\log _{10} x+\log _{10}(x+21)=2$
21. $2 \log _{3}(x+4)-\log _{3} 9=2$
22. $5 \log _{3}(x+1)-\log _{3} 27=2$
23. $3 \log _{2}(x-4)+\log _{2} 32=17$
24. $\log _{3} 2+\log _{3} 8=\log _{3} 2 x$
25. $\log _{5} 42-\log _{5} 7=\log _{5}(3 x-1)$
26. $\log _{9} 5+\log _{9}(n+1)=\log _{9} 6 n$

Growth \& Decay Applications Law of uninhibited growth or decay: $A(t)=A_{0} e^{k t} \quad \boldsymbol{A}_{\mathbf{0}}=$ initial population, $k=$ rate of change, $t=$ time in years
27. The size P of a certain insect population at time t (in days) obeys the function $P(t)=500 e^{0.02 t}$.
a) Determine the number of insects at = 0 days.
b) What is the growth rate of the insect population?
c) What is the population after 10 days?
d) When will the population reach 800 ? Round to the nearest tenth of a day.
e) When will the insect population double? Round to the nearest tenth of a day.
28. The population of a colony of mosquitos obeys the law of inhibited growth.
a) If there are 1000 mosquitoes initially and there are 1800 after day 1 , find the rate of increase. Round to the nearest hundredth of a percent.
b) What is the size of the colony after 3 days?
c) How long is it until there are 10,000 mosquitoes? Round to the nearest tenth of a day.
d) How long is it until the population doubles? Round to the nearest tenth of a day.
29. If Tanisha has $\$ 100$ to invest at 8% per annum compounded monthly, how long will it be before she has \$150? Use formulas from 11.5.

Review: Solve the given equations. Show all work!
30. $x^{2}-7 x-30=0$
31. $x^{2}-4 x+3=0$

