2023-2024

Name ______ Period _____

Review.

a)
$$(x-6)(x+3)$$

b)
$$(2x - 5)^2$$

c)
$$(x + 4)(x - 4)$$

Factoring using GCF: Steps

Factor $-4n^2 - 20$		
• Find the GCF.	-4n ² - 20 Both have -4 as GCF	
• Write the GCF outside a set of parentheses.	-4()	
• Inside the parentheses, write what you are left with when you <i>divide</i> the original terms by the GCF.	$-4(-\frac{4n^2}{-4} - \frac{20}{-4})$ $-4(n^2 + 5)$	

• When the leading coefficient is negative, factor out a common factor with a negative coefficient.

Examples: Factor the following expressions.

1.
$$20x + 32$$

2.
$$-18u^4 + 12$$

3.
$$9k^2 - 3k$$

4.
$$8r^3 - 36r^2 + 4r^2$$

4.
$$8r^3 - 36r^2 + 4r$$
 5. $2y^3z - 8y^2z + 5yz^2 + 10yz^3$ 6. $-4t^3v - 10t^2v^5$

6.
$$-4t^3v - 10t^2v^5$$

Factoring by Grouping (Used when you have 4 terms): Steps

Factor $18x^3 + 15x^2 + 24x + 20$	
1. Factor out the GCF from all four terms first (if there is one).	
2. Group into 2 parts	$18x^3 + 15x^2 + 24x + 20$
3. Factor out the GCF from each group	$3x^2(6x+5) + 4(6x+5)$
4. Hopefully the "leftover" pieces of each group are	
the same (If not, go back through and find your	$(6x+5)(3x^2+4)$
mistake).	
Factor the matching binomial out of the expression.	

Factor each polynomial by grouping. Don't forget to factor out the GCF first, if necessary.

7.
$$g^3 - 3g^2 - 5g + 15$$

8.
$$5a^3 + 2a^2 + 15a + 6$$

8.
$$5a^3 + 2a^2 + 15a + 6$$
 9. $6xy - 36x - 5y + 30$

10.
$$2h^3 - 5h^2 + 8h - 20$$

10.
$$2h^3 - 5h^2 + 8h - 20$$
 11. $42xy - 36x^2 + 21y - 18x$ 12. $3x^2 + 3x - 5xy - 5y$

12.
$$3x^2 + 3x - 5xy - 5y$$

To get ready for factoring trinomials

Standard form of a quadratic equation: $ax^2 + bx + c = y$

Use the numbers that are in the spots for a, b, and c. Mulitply a and c. Then find the factors (numbers that multiply to $a \cdot c$) that ad to b.

Example: $y = 5x^2 - 17x + 6$ Use a = 5, b = -17, and c = 6. ac = 30 What are the factors of 30 that add to -17? The numbers are -15 and -2.

For the following questions, Find the factors of ac, that add to b.

13.
$$y = 4x^2 - 5x - 6$$

$$14. \ \ y = 5x^2 + 6x - 8$$

14.
$$y = 5x^2 + 6x - 8$$
 15. $y = 6x^2 + 19x + 10$

16.
$$y = 4x^2 - 9x - 9$$

17.
$$y = 7x^2 + 22x + 3$$
 18. $y = x^2 + 3x - 10$

18.
$$v = x^2 + 3x - 10$$

