

Date:

Objective:

Binomial Analysis: Multiply the following.

a)
$$(x+3)(x+5)$$
 b) $(n-7)(n-4)$ c) $(t-8)^2$

d) Explain how the numbers in your answer relate to the numbers in the factors?

$x^{2} + bx + c$ Factoring a Trinomial where the 1st term is x^{2} OR a = 1

1. GCF! If there is a GCF, factor it out. Example $x^2 - 4x - 45$ 2. $x^2 + bx + c$, Find two numbers that multiply to c and add/subtract to b. NOTE: IF there are no numbers, then the polynomial is PRIME .Step 2: $b = -4 c = -45$ $(-9)(5) = -45$ $-9+5 = -4$ 3.Rewrite the middle term bx as $14444 c = 224444 c = 24444 c = -45$		
multiply to c and add/subtract to b .Step 2: $b = -4$ $c = -45$ NOTE: IF there are no numbers, then the polynomial is PRIME. $(-9)(5) = -45$ $-9+5 = -4$ 3. Rewrite the middle term bx asStep 3: $x^2 - 9x + 5x - 45$		
NOTE: IF there are no numbers, then the polynomial is PRIME. $(-9)(5) = -45$ $-9+5 = -4$ 3. Rewrite the middle term bx asStep 3: $x^2 - 9x + 5x - 45$		
3. Rewrite the middle term bx as Step 3: $x^2 - 9x + 5x - 45$		
1st $\# \cdot x + 2$ nd $\# \cdot x$.		
4. Factor the resulting polynomial. Step 4: $(x^2 - 9x) + (5x - 45)$		
5. If you factored a GCF , remember to put it $x(x-9) + 5(x-9)$		
back in.		
Factors: $(x - 9)(x + 5)$		
Shortcut where the 1 st term is x^2 OR $a = 1$ $2x^2 - 8x - 90$		
1. GCF ! If there is a GCF, factor it out. Step 1: GCF = 2 $2(x^2 - 4x - 45)$		
2. $x^2 + bx + c$, Find two numbers that Step 2: $b = -4$ $c = -45$		
multiply to c and add/subtract to b . (-9)(5) = -45		
3. The direct factored form of $x^2 + bx + c$ is $-9+5 = -4$		
(x+1st #)(x+2nd #). Step 3: $(x-9)(x+5)$		
4. If you factored a GCF , put it back in. Step 4: $2(x-9)(x+5)$		
Practice: Factor the following polynomials. $(x - y)(x + y)$		

a)
$$x^2 + 11x + 30$$

b) $m^2 - 8m + 16$

c)
$$3t^2 + 18t - 120$$
 d) $-5g^2 + 25g - 30$

Binomial Analysis: Multiply the following.

$ax^2 + bx + c$ Factoring a Trinomial where the 1st coefficient is NOT 1 OR $a \neq 1$

1.	GCF! If there is a GCF, factor it out.	<u>Example</u>
2.	$ax^2 + bx + c$, Find two numbers that multiply to the	$12x^2 + x - 6$
	answer for $(\pmb{a}\cdot \pmb{c})$ and add/subtract to \pmb{b} .	Step 2: $b = 1$ a·c = -72 (8)(-9) = -72
	<u>NOTE</u>: IF there are no numbers, then the polynomial is PRIME .	8 - 9 = -1 Step 3: $12x^2 + 8x - 9x - 6$
	Rewrite the middle term bx as $1st \# \cdot x + 2nd \# \cdot x$.	
	Factor the resulting polynomial.	Step 4: $(12x^2 + 8x) + (-9x - 6)$
5.	If you factored a GCF , remember to put it back in.	4x(3x+2) - 3(3x+2)
		Factors: $(3x+2)(4x-3)$

Practice: Factor the following polynomials.

a) $9h^2 + 9h + 2$

b) $2z^2 - 11z + 12$

c) $4x^2 - 12x + 9$

d) $9w^2 + 18w - 6$

e) $12y^2 + 30y - 72$

f) $4x^2 - 2xy - 12y^2$

Factoring by looking for quadratic form expressions:
ax² + bx + c Standard Quadratic form.
1. The given problem is a TRINOMIAL
2. The variables have the pattern of (variable) and (variable)²
3. Can factor using quadratic factoring rules.

Practice: Factor the following polynomials. a) $x^4 - 18x^2 + 81$

b) $2x^6 + 8x^3 - 90$

c)
$$4x^4 - 3x^2 - 10$$
 d) $6x^8 + 22x^4 + 12$

$ax^2 + bx + c = 0$ Solving a Quadratic Equation:

1. Make sure your equation is set = 0. **NOTE:** If Equation is already factored, DO NOT multiply. Go to step 3.

2. Factor the equation using quadratic factoring rules.

3. Set each x-factor = 0.

4. Solve each factor.

Practice: SOLVE the following polynomials. a) (x - 1)(x + 4)(2x + 3) = 0

b) $3x^2 - 12x = 0$

c) $4y^2 - 4y + 1 = 0$ d) $4z^2 + 12x + 8 = 0$

e) $5x^3 - 15x^2 - 50x = 0$

f) $(w+6)(w^2-9x+20) = 0$