Date:

Objective:

Binomial Analysis: Multiply the following.
a) $(x+3)(x+5)$
b) $(n-7)(n-4)$
c) $(t-8)^{2}$
d) Explain how the numbers in your answer relate to the numbers in the factors?
$x^{2}+b x+c$ Factoring a Trinomial where the $1^{\text {st }}$ term is x^{2} OR $a=1$

1. GCF! If there is a GCF, factor it out.
2. $\boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$, Find two numbers that multiply to \boldsymbol{c} and add/subtract to \boldsymbol{b}.
NOTE: IF there are no numbers, then the polynomial is PRIME.
3. Rewrite the middle term $\boldsymbol{b} \boldsymbol{x}$ as 1st \#• $\boldsymbol{x}+\mathbf{2 n d} \# \cdot \boldsymbol{x}$.
4. Factor the resulting polynomial.
5. If you factored a GCF , remember to put it back in.

Shortcut where the $1^{\text {st }}$ term is x^{2} OR $a=1$

1. GCF: If there is a GCF, factor it out.
2. $\boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$, Find two numbers that multiply to \boldsymbol{c} and add/subtract to \boldsymbol{b}.
3. The direct factored form of $\boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$ is

$$
(x+1 \text { st } \#)(x+2 \text { nd } \#)
$$

4. If you factored a GCF, put it back in.

Example

$x^{2}-4 x-45$
Step 2: $\quad b=-4 \quad c=-45$
$(-9)(5)=-45$
$-9+5=-4$
Step 3: $x^{2}-9 x+5 x-45$
Step 4: $\left(x^{2}-9 x\right)+(5 x-45)$

$$
x(x-9)+5(x-9)
$$

Factors: $(x-9)(x+5)$
Step 1: GCF $=22\left(x^{2}-4 x-45\right)$
Step 2:
$b=-4 \quad c=-45$
$(-9)(5)=-45$
$-9+5=-4$
Step 3: $\quad(x-9)(x+5)$
Step 4: $2(x-9)(x+5)$

Practice: Factor the following polynomials.
a) $x^{2}+11 x+30$
b) $m^{2}-8 m+16$
c) $3 t^{2}+18 t-120$
d) $-5 g^{2}+25 g-30$

Binomial Analysis: Multiply the following.
a) $(2 x+3)^{2}$
b) $(3 v-1)(v+2)$
c) $(4 c-3)(7 c-2)$
$a x^{2}+b x+c \quad$ Factoring a Trinomial where the $1^{\text {st }}$ coefficient is NOT 1 OR $a \neq 1$

1. GCF: If there is a GCF, factor it out.
2. $\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$, Find two numbers that multiply to the answer for $(\boldsymbol{a} \cdot \boldsymbol{c})$ and add/subtract to \boldsymbol{b}.
NOTE: IF there are no numbers, then the polynomial is PRIME.
3. Rewrite the middle term $\boldsymbol{b} \boldsymbol{x}$ as $\mathbf{1 s t} \# \cdot \boldsymbol{x}+\mathbf{2 n d} \# \cdot \boldsymbol{x}$.
4. Factor the resulting polynomial.
5. If you factored a GCF , remember to put it back in.

Example

$12 x^{2}+x-6$
Step 2: $\quad b=1 \quad a \cdot c=-72$
$(8)(-9)=-72$
$8-9=-1$
Step 3: $12 x^{2}+8 x-9 x-6$
Step 4: $\left(12 x^{2}+8 x\right)+(-9 x-6)$
$4 x(3 x+2)-3(3 x+2)$
Factors: $(3 x+2)(4 x-3)$

Practice: Factor the following polynomials.
a) $9 h^{2}+9 h+2$
b) $2 z^{2}-11 z+12$
c) $4 x^{2}-12 x+9$
d) $9 w^{2}+18 w-6$
e) $12 y^{2}+30 y-72$
f) $4 x^{2}-2 x y-12 y^{2}$

Factoring by looking for quadratic form expressions:
$a x^{2}+b x+c \quad$ Standard Quadratic form.

1. The given problem is a TRINOMIAL
2. The variables have the pattern of (variable) and (variable) ${ }^{2}$
3. Can factor using quadratic factoring rules.

Practice: Factor the following polynomials.
a) $x^{4}-18 x^{2}+81$
b) $2 x^{6}+8 x^{3}-90$
c) $4 x^{4}-3 x^{2}-10$
d) $6 x^{8}+22 x^{4}+12$
$a x^{2}+b x+c=0 \quad$ Solving a Quadratic Equation:

1. Make sure your equation is set $=0$.

$$
\text { NOTE: If Equation is already factored, DO NOT multiply. Go to step } 3 .
$$

2. Factor the equation using quadratic factoring rules.
3. Set each x -factor $=0$.
4. Solve each factor.

Practice: SOLVE the following polynomials.
a) $(x-1)(x+4)(2 x+3)=0$
b) $3 x^{2}-12 x=0$
c) $4 y^{2}-4 y+1=0$
d) $4 z^{2}+12 x+8=0$
e) $5 x^{3}-15 x^{2}-50 x=0$
f) $(w+6)\left(w^{2}-9 x+20\right)=0$

