1

Date:

Section:

Objective:

Vocabulary Zeros:

x-intercepts:

Fundamental Theorem of Algebra:

EXAMPLE: How many zeros does each polynomial have?

a.
$$f(x) = x^6 + 3x^4 - 6x^3 + 8$$

a.
$$f(x) = x^6 + 3x^4 - 6x^3 + 8$$
 b. $f(x) = (x+4)(x-3)(2x+5)$ c. $f(x) = 2x(x-1)(x^2-9)$

c.
$$f(x) = 2x(x-1)(x^2-9)$$

Ways to find the zeros (solve for the variable)

Way 2—more than one variable	Way 3—polynomial is prime	
in the equation:	(doesn't factor):	
1. Set equation equal to 0	1. Set equation equal to 0	
2. FACTOR	2. Find the values of <i>a</i> , <i>b</i> , and <i>c</i>	
	3. Substitute those values into the	
3. Set each factor equal to 0	Quadratic Formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
4. Solve for x		
EXAMPLE: Find the zeros.	4. Use calculator to evaluate what is under the square root sign (DO NOT use the square root sign!)	
$x^2 + 4x = 12$	5. Simplify the square root	
	EXAMPLE: Find the zeros. $y = x^2 + x - 1$	
	 in the equation: Set equation equal to 0 FACTOR Set each factor equal to 0 Solve for x EXAMPLE: Find the zeros.	

EXAMPLE: Find the zeros using two different methods above.

$$y = 2x^2 + 5x - 3$$

1.
$$f(x) = x^2 + 8x + 10$$

$$2. f(x) = 5x^2 - 20x - 9$$

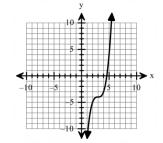
$$3. f(x) = 3x^2 - 14x - 5$$

<u>Determining End Behavior</u>: what happens at the "ends" of the graph. We write end behavior using limits.

• **From a graph:** This means we determine what is happening to the function as on the right end of the x-axis and what is happening to the function on the left end of the x-axis.

EXAMPLE: Left End Behavior
$$\lim_{x \to -\infty} f(x) = -\infty$$

As x goes left to $-\infty$, the function goes down to $-\infty$



Right End Behavior
$$\lim_{x\to\infty} f(x) = \infty$$

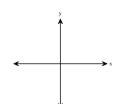
As x goes right to ∞ , the function goes up to ∞

- From an equation: To find the end behavior of a function, we look at two things.
 - 1. the leading coefficient: is it a positive or negative number?
 - 2. the degree of the polynomial: is it an even or odd number?

Steps for finding the end behavior

Even positive

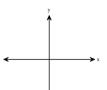
Even negative



Ex.

$$\lim f(x) =$$

 $\lim f(x) =$



Ex.

$$\lim f(x) =$$

 $\lim_{x \to \infty} f(x) =$

Odd positive

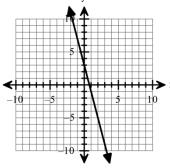
Odd negative

Ex. $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) =$



Find the end behavior of each function given. Write the end behavior in limit notation if it is not written for you.

1.



Number of Zeros:

Left End Behavior $\lim_{x \to -\infty} f(x) =$ Right End Behavior $\lim_{x \to \infty} f(x) =$

$$3. f(x) = -3x^6 + 5x^4 - x^2 + 3$$

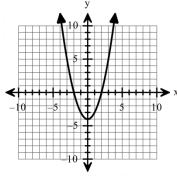
Number of Zeros: _____

Degree: ____ L.Coefficent: ___

Left End Behavior $\lim_{x \to -\infty} f(x) =$

Right End Behavior $\lim_{x \to \infty} f(x) =$

2.



Number of Zeros:

Left End Behavior $\lim_{x \to -\infty} f(x) =$ Right End Behavior $\lim_{x \to \infty} f(x) =$

$$4. g(x) = 2x^3 + x^2 - x + 1$$

Number of Zeros: _____

Degree: ____ L.Coefficent: ___

Left End Behavior $\lim_{x \to -\infty} f(x) =$ Right End Behavior $\lim_{x \to \infty} f(x) =$

Match the graph with its equation (draw a line connecting them) by Identifying the end behavior.

Even or Odd?

Positive or Negative?

2.

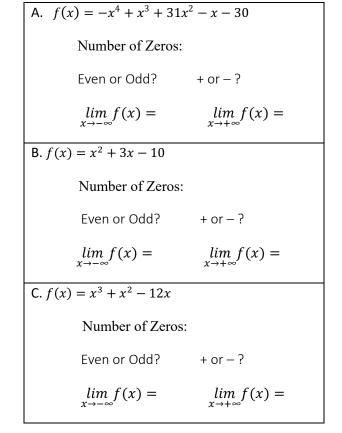
Even or Odd?

Positive or Negative?

3.

Even or Odd?

Positive or Negative?



Finding & graphing zeros of the function: In order to find the zeros of a function we must **factor** the polynomial COMPLETELY! Then we will set each factor equal to zero, and solve for *x*.

For each problem, find the zeros and graph them. Identify the end behavior and draw it on the graph.

1. f(x) = 3(x-6)(x+6)

Degree: _____ Even or Odd? Leading Coefficient: _____ Positive or negative?

Which tells us?

 $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) =$

Zeros:

2. f(x) = x(x+5)(x-8)

End Behavior

Degree: ____ Even or Odd? Leading Coefficient: ______ Positive or negative?

Which tells us?

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) =$$

Zeros:

3. $f(x) = -x^2 - 4x + 5$

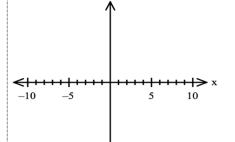
End Behavior

Degree: _____Even or Odd?

Leading Coefficient: ______
Positive or negative?

Which tells us?

 $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) =$



Zeros:

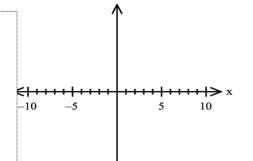
4. $f(x) = -2x^3 - 14x^2 - 12x$

End Behavior

Degree: _____ Even or Odd? Leading Coefficient: _____ Positive or negative?

Which tells us?

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) =$$



Zeros: _____