

Date:

Section:

Objective:

Review:			
Difference of Squares: $a^2 - b^2 = (a + b)(a - b)$		Remember:	$i = \sqrt{-1}$
Examples: Factor completely.			and
$x^2 - 49$	$x^2 - 16$		=2 1
= (x+2)(x-2)	=(3x+4)(3x-4)		$l^{2} = -1$

You may have been told that a sum of squares such as $a^2 + 4$ is not factorable. But it is factorable, just not with real numbers.

Sum of Squares: $a^{2} + b^{2} = a^{2} - i^{2}b^{2}$	Sum of Squares: $a^2 + b^2 = (a + ib)(a - ib)$		
$= (a)^2 - (ib)^2$ $= (a + ib)(a - ib)$	So $x^2 + 4 = x^2 - i^2 \cdot 2^2$ = $(x)^2 - (i \cdot 2)^2$ = $(x + 2i)(x - 2i)$		

Now you try- Factor Completely:

1. $x^2 + 9$	2. $y^2 + 25$	3. $16a^2 + 4$	4. $36b^2 + 1$	5. $m^2 + 49n^2$

Find the zeros by solving. What do those zeros look like on the graph and why?

1.
$$y = x^2 + 16$$

2. $y = x^2 + 4x + 8$

2.
$$y = 8x^3 + 1$$

