Objective:
Review:

| Difference of Squares: $\boldsymbol{a}^{\mathbf{2}}-\boldsymbol{b}^{\mathbf{2}}=(\boldsymbol{a}+\boldsymbol{b})(\boldsymbol{a}-\boldsymbol{b})$ | Remember: | $\boldsymbol{i}=\sqrt{-\mathbf{1}}$ |
| :--- | :---: | :--- | :---: |
| Examples: Factor completely. | | |
| $x^{2}-49$ $x^{2}-16$
 $=(x+2)(x-2)$ $=(3 x+4)(3 x-4)$ | | and |
| | | $\boldsymbol{i}^{2}=-\mathbf{1}$ |

You may have been told that a sum of squares such as $a^{2}+4$ is not factorable.
But it is factorable, just not with real numbers.

Sum of Squares:

$$
\begin{aligned}
\boldsymbol{a}^{2}+\boldsymbol{b}^{2} & =a^{2}-i^{2} b^{2} \\
& =(a)^{2}-(i b)^{2} \\
& =(\boldsymbol{a}+\boldsymbol{i} \boldsymbol{b})(\boldsymbol{a}-\boldsymbol{i} \boldsymbol{b})
\end{aligned}
$$

$$
\text { Sum of Squares: } a^{2}+b^{2}=(a+i b)(a-i b)
$$

$$
\text { So... } \quad \begin{aligned}
\boldsymbol{x}^{2}+\mathbf{4} & =x^{2}-i^{2} \cdot 2^{2} \\
& =(x)^{2}-(i \cdot 2)^{2} \\
& =(x+2 i)(x-2 i)
\end{aligned}
$$

Now you try- Factor Completely:

1. $x^{2}+9$
2. $y^{2}+25$
3. $16 a^{2}+4$
4. $36 b^{2}+1$
5. $m^{2}+49 n^{2}$

Find the zeros by solving. What do those zeros look like on the graph and why?

1. $y=x^{2}+16$
2. $y=x^{2}+4 x+8$

3. $y=8 x^{3}+1$

