orate: $1 / 18 / 23$ section: 6.1
objective I can simplify radical, find missing angle of tricungle, find all trig

Simplify the following radicals.
Example 1
$\sqrt{13} \cdot \sqrt{13}$
$9 \sqrt{169}$
(13)
ratios. Example 2

Steps

Simplify by rationalizing the denominator.

Steps
(1) times to $p+$ bottom
by $\sqrt{ }$ in denom
(2) multiply
(3) simplify hum of then $\frac{10 \sqrt{15}}{9}$
the fraction

What do you use to find the missing side of a right triangle?
Pythagorean Theorem

$$
a^{2}+b^{2}=c^{2}
$$

$\frac{\sqrt{136}}{2 \sqrt{34}=x}$ ensue

$$
\sqrt{6^{2}+10^{2}}=\sqrt{x^{2}}
$$

 (27) 217 pythay KGHT triangles!!!!!?!?

Find the missing side of the following right triangles. Leave answers in sim lest radical form. Ne DECIMALS!!

Example 1

Rule: Radicals cannot have decimals in them.

Example $2 \quad a$

$48+4=x^{2}$

So, if the square root has a decimal in it, then round your answer to the nearest hundredth.

How many degrees do all the angles of a triangle add up to? 180°

Find the missing angle.

Example 1

$180^{\circ}-83^{\circ}-29^{\circ}$
$x=68^{\circ}$

$\theta=$ theta
$\gamma=$ gamma
$\alpha=$ alpha
$\beta=$ beta
Hypotenuse: longest side, across from biggest angle $=90^{\circ}$
opposite side: side across from θ
Adjacent side: side touching θ

$$
x=\frac{1}{x}
$$

Ratios of the sides are the same for every angle. Example: No matter how long the sides are of a 53.1° angle, when you divide the 2 sides you will always get the same decimal.

There are 6 trigonometric functions.

$$
\operatorname{sine}=\underline{\sin \theta}=\frac{o p p}{\text { hyp }}
$$

$$
\text { Cosine }=\frac{\cos \theta}{h y p}
$$

Example: Find all 6 trigonometric ratios.
a)

b)

SOL CAST TIA

$$
\begin{aligned}
& \sin \theta=\frac{\frac{2}{6}=\frac{1}{3}}{2 \sqrt{10}}=\frac{\sqrt{10}}{3} \quad \csc \theta=\frac{3}{6} \quad \sec \theta=\frac{3}{\sqrt{60}}=\frac{3 \sqrt{10}}{10} \\
& \cos \theta=\frac{1}{10}=\frac{\sqrt{60}}{10} \\
& \tan \theta=\frac{\operatorname{lot}}{160} \quad \cot \theta=\sqrt{10} \\
& \frac{2}{2 \sqrt{10}}=\frac{1}{\sqrt{10} \cdot \sqrt{10}}=\frac{\sqrt{100}}{10}
\end{aligned}
$$

