

Date:

Objective:

If the picture is not draw for an SSA triangle, you do not know how the triangle is put together.

SSA (The Ambiguous Case): If you know two sides and a non-included angle (an angle that is not between the sides), there may be zero, one, or two possible triangles that fit the given measurements.

Solve $\Box ABC$ given that a = 6, b = 7, and $\angle A = 30^{\circ}$ Two triangles are possible with the given information.

To determine if there is a 2nd valid angle:

1. See if you are given two sides and the angle not in between (SSA). This is the situation that may have 2 possible answers.

2. Find the value of the unknown angle.

3. No triangle:

One triangle:

Two triangles:

****When using law of sines, you must _

.....

Examples: Solve each triangle. Round your answers to the nearest tenth. Hint: Draw the triangle and identify the type of triangle.

a) $\beta = 38^{\circ}$, $b = 2.9$, $c = 5.9$		b) $\beta = 38^{\circ}, b = 6.4, c = 5.9$	
<i>m∠A</i> =	<i>a</i> =	<i>m∠A</i> =	<i>a</i> =
$m \angle B = $	b =	<i>m∠B</i> =	b =
<i>m∠C</i> =	c =	$m \angle C = $	c =

c) $m \angle C = 36^{\circ}, b = 19 \text{ m}, c = 20 \text{ m}$ d) $\beta = 38^{\circ}, b = 4.7, c = 5.9$

$m \angle A = $	<i>a</i> =	<i>m∠A</i> =	<i>a</i> =
$m \angle B = $	b =	$m \angle B = $	b =
<i>m∠C</i> =	c =	<i>m∠C</i> =	c =