SM3 Test Review Unit 11 (2023-2024)

Name \qquad Date \qquad Period \qquad

Evaluate the logarithm without a calculator. Show work!

1. $\log _{6}\left(\frac{1}{36}\right)$
2. $10^{\log 5}$
3. $\log 1000$
4. $\log _{21} \sqrt{21}$
5. $\ln \frac{1}{\sqrt{e}}$
6. $\log _{7} 343$
7. $\log _{6} 6^{2}$
8. $e^{\ln 20}$
9. $\log _{8} \frac{1}{64}$
10. $\ln \mathrm{e}$
11. $\log _{12} 1$

Find the following using a calculator. Round to the nearest ten thousandths.
12. $\log 32$
13. $\ln 0.98$
14. $\log (-3)$
15. $5^{3.2}$

Rewrite as an exponential function.
16. $\log x=4$
17. $\ln 5=x$
18. $\log _{3} 243=5$

Rewrite as a logarithmic function.
19. $5^{4}=625$
20. $10^{x}=100$
21. $e^{2}=x$

Solve each function by using the one-to-one principle (make the bases the same). DO NOT use logarithms!
22. $2^{3 x}=8$
23. $3^{2 x-1}=3^{5}$

Describe how to transform the graph of the basic function $g(x)$ into the graph of the given function $f(x)$.
24. $g(x)=\ln x ; f(x)=\ln (-x)-7$
25. $g(x)=2^{x} ; f(x)=3 \cdot 2^{x+3}$
26. Determine the function that best describes the given graph.
a. $\quad y=\ln x-5$
b. $y=\ln (x-5)$
c. $y=\ln x+5$
d. $y=\ln (x+5)$

Rewrite the expression as a sum or difference or multiple of logarithms.
27. $\log _{2}\left(\frac{5 x}{y}\right)$
28. $\log _{8}\left(\frac{2 x-3}{x^{4}}\right)$

Use the product, quotient and power rules of logarithms to rewrite the expression as a single logarithm. Assume that all variables represent positive real numbers.
29. $\log _{3} 6-\log _{3} a$
30. $4 \log x+2 \log y$
31. $2 \log _{4} 3+\log _{4}(x-5)-7 \log _{4} x$

Write the change of base rule to find the logarithm to the nearest ten thousandths.
32. $\log _{3.4} 210$
33. $\log _{4} 3.8$

Solve each equation. Show work. Round to the nearest thousandths if necessary.
34. $\log _{4} x=\frac{1}{2}$
35. $3 e^{(2 x-7)}=8$
36. $\log _{2}(x+2)=5$
37. $\log \left(\frac{3}{5} x-2\right)=5$
38. $-10^{x-2}+8=-20$
39. $\log _{5} 4 x=\log _{5} 10$
40. $\log _{3}(x+4)-\log _{3} 4=\log _{3} 22$
41. $\log _{5} 4+\log _{5}(3 x-4)=2$

Use the given function f to:
(a) Find the domain of f and any asymptotes of f. (b) Write the transformations. (c) Graph f. (d) From the graph determine the range.

Use transformations and a table of values for at least 3 key points to get the graphs. No graphing calculators!
44. $f(x)=\left(\frac{1}{2}\right)^{x-1}$

Domain:
Asymptote:
Key points and transformations:

x	$f(x)$

x	$f(x)$

Range:
45. $f(x)=-3^{x}+2$

Domain:

Asymptote:
Key points and transformations:

x	$f(x)$

x	$f(x)$

46. $f(x)=\log _{2} x+1$

Domain:
Asymptote:
Key points and transformations:

x	$f(x)$

x	$f(x)$

Range:
47. $f(x)=2 \log _{3}(x+1)$

Domain:
Asymptote:
Key points and transformations:

x	$f(x)$

x	$f(x)$

Range:

Find the inverse of each function. Show work.
48. $f(x)=2 x-3$
49. $f(x)=\frac{x^{3}-2}{4}$
50. $f(x)=\sqrt{x+3}$
51. $f(x)=2(x+2)^{2}-3$
52. $f(x)=-\sqrt[3]{3 x}+5$
53. $f(x)=\frac{3 x+5}{2 x-1}$
54. Find the domain of $f(x)=\ln (10-x)$. Show work!
55. Use the graph of the given one-to-one function to sketch the graph of the inverse function. For convenience, the graph $y=x$ is also given.

56. Find the amount which results from the following investment. $\$ 10,000$ invested at 8% compounded quarterly after a period of 5 years. Round to the nearest cent. $\quad \boldsymbol{A}=\boldsymbol{P} \cdot\left(\mathbf{1}+\frac{r}{n}\right)^{n t}$
57. The formula for a small bacteria population is $P(t)=400 e^{.23 t}$ After how many years will the population reach 2000? Round to the nearest year.

