SM3 Test Review Unit 11 (2023-2024)

Name		Date	Period
Evaluate the logarit	hm without a calculator.	Show work!	
1. $\log_6\left(\frac{1}{36}\right)$	2. 10 ^{log 5}	3. log 1000	4. $\log_{21}\sqrt{21}$
5. $\ln \frac{1}{\sqrt{e}}$	6. log ₇ 343	7. $\log_6 6^2$	8. e ^{ln20}
9. $\log_8 \frac{1}{64}$	10. ln e	11. log ₁₂ 1	
Find the following u	using a calculator. Round 13. ln 0.98	to the nearest ten thousar 14. $\log(-3)$	ndths. 15. 5 ^{3.2}
Rewrite as an expone 16. $\log x = 4$	ntial function. 17. lr	15 = x	18. log ₃ 243 = 5
Rewrite as a logarithr 19. $5^4 = 625$	nic function. 20. 10 ^x	= 100	21. $e^2 = x$

Solve each function by using the one-to-one principle (make the bases the same). DO NOT use logarithms!

22. $2^{3x} = 8$ 23. $3^{2x-1} = 3^5$

Describe how to transform the graph of the basic function g(x) into the graph of the given function f(x).

24.
$$g(x) = \ln x$$
; $f(x) = \ln(-x) - 7$
25. $g(x) = 2^x$; $f(x) = 3 \cdot 2^{x+3}$

- 26. Determine the function that best describes the given graph.
 - a. $y = \ln x 5$ c. $y = \ln x + 5$

b.
$$y = \ln(x - 5)$$
 d. $y = \ln(x + 5)$

Rewrite the expression as a sum or difference or multiple of logarithms.

27.
$$\log_2\left(\frac{5x}{y}\right)$$
 28. $\log_8\left(\frac{2x-3}{x^4}\right)$

Use the product, quotient and power rules of logarithms to rewrite the expression as a single logarithm. Assume that all variables represent positive real numbers.

29. $\log_3 6 - \log_3 a$ 30. $4\log x + 2\log y$ 31. $2\log_4 3 + \log_4 (x-5) - 7\log_4 x$

Write the change of base rule to find the logarithm to the nearest ten thousandths.

32. log_{3.4} 210

33. log₄ 3.8

Solve each equation. Show work. Round to the nearest thousandths if necessary.

34. $\log_4 x = \frac{1}{2}$ 35. $3e^{(2x-7)} = 8$

36.
$$\log_2(x+2) = 5$$
 37. $\log\left(\frac{3}{5}x - 2\right) = 5$

38. $-10^{x-2} + 8 = -20$ 39. $\log_5 4x = \log_5 10$

40. $\log_3(x+4) - \log_3 4 = \log_3 22$ 41. $\log_5 4 + \log_5(3x-4) = 2$

Use the given function *f* to:

(a) Find the domain of f and any asymptotes of f. (b) Write the transformations. (c) Graph f. (d) From the graph determine the range.

Use transformations and a table of values for at least 3 key points to get the graphs. No graphing calculators!

44.
$$f(x) = \left(\frac{1}{2}\right)^{x-1}$$

Domain:

Asymptote:

Key points and transformations:

x	f(x)

x	f(x)

Range:

45.
$$f(x) = -3^x + 2$$

Domain:

Asymptote:

Key points and transformations:

x	f(x)

f(x)x

Range:

46. $f(x) = \log_2 x + 1$

Domain:

Asymptote:

Key points and transformations:

x	f(x)	

x	f(x)

Range:

47.
$$f(x) = 2\log_3(x+1)$$

Domain:

Asymptote:

Key points and transformations:

Range:

Find the inverse of each function. Show work.

48.
$$f(x) = 2x - 3$$

49. $f(x) = \frac{x^3 - 2}{4}$
50. $f(x) = \sqrt{x + 3}$

51.
$$f(x) = 2(x+2)^2 - 3$$

52. $f(x) = -\sqrt[3]{3x} + 5$
53. $f(x) = \frac{3x+5}{2x-1}$

54. Find the domain of $f(x) = \ln(10 - x)$. Show work!

55. Use the graph of the given one-to-one function to sketch the graph of the inverse function. For convenience, the graph y = x is also given.

y(3,8)

56. Find the amount which results from the following investment. \$10,000 invested at 8% compounded quarterly after a period of 5 years. Round to the nearest cent. $A = P \cdot \left(1 + \frac{r}{n}\right)^{nt}$

57. The formula for a small bacteria population is $P(t) = 400e^{23t}$ After how many years will the population reach 2000? Round to the nearest year.