2023-2024

Name _____ Date ____ Period

Simplify each expression by adding, subtracting, or multiplying. Show work!

1.
$$(3x^2-4x+1)+(2x^3+x^2-x-4)$$

1.
$$(3x^2-4x+1)+(2x^3+x^2-x-4)$$
 2. $(-x^2-4x-2)-(2x^3+3x^2-x-1)$

3.
$$(4x-3)(x^3+3x^2-x-1)$$

4.
$$(x+5)(2x-1)-(3x^2-16x+3)$$

Multiply the expression using the polynomial identities, if possible. Show work!

5.
$$(3x+2y)^2$$

6.
$$(x-2y)^3$$

7.
$$(x-4)(x+6)$$

8.
$$(5x+1)(5x-1)$$

Factor the expressions using the polynomial identities, if possible. Show work!

9.
$$16x^2 - 49$$

10.
$$x^3 + 125$$

11.
$$x^2-4x-21$$

12.
$$9x^2 - 81$$

Use the Remainder Theorem to determine which of the following is a factor? Show work!

13. $x^3 - 3x^2 - x + 3$

- a. x + 1
- b. x 2

Use the Remainder Theorem to determine which of the following is a solution? Show work!

14. $2x^3 + x^2 - 5x + 2$

- a) x = -3
- b) x = 1

Describe the end behavior of each polynomial using limit notation. Write your own limit notation on 17 and 18.

15.
$$f(x) = (x+3)(x-1)(2x-5)$$

16.
$$f(x) = -(x+4)^2(x-2)$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) =$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) =$$

17.
$$f(x) = -2x^3 - 3x^2 + 36x - 58$$

18.
$$f(x) = 3x^4 - 7x^3 + 16x^2 - 15x + 65$$

State the degree and list the zeros of the polynomial. State the multiplicity of each zero and determine whether the graph crosses or touches the *x*-axis at the corresponding *x*-intercept. Then sketch a graph.

19.
$$f(x) = -2x^3(x+8)$$
 Degree:

Zero	Multiplicity	Touch/Cross

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) =$$

20.
$$f(x) = (x+1)^2 (x-5)^3 (x+3)^2$$
 Degree:

Zero	Multiplicity	Touch/Cross

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) =$$

21. Graph the given polynomial function using a graphing calculator and then find the following:

$$f(x) = -x^3 + 3x^2 + x - 3$$

 $f(x) = -x^3 + 3x^2 + x - 3$ **Zeros** (write as ordered pairs):

y-intercept (write as an ordered pair): _____

End Behavior (write in limit notation): _____

Divide using long division.

Divide using synthetic division.

22.
$$(2x^3 + 7x^2 - 13x - 3) \div (2x - 3)$$

23.
$$(2x^3 - 7x^2 + 11) \div (x - 3)$$