OBJECTIVE:

Vocabulary

Linear factorization:
Complex numbers:
Standard Form: Example:
Imaginary numbers:
Example: $\quad i=_\quad i^{2}=_\quad i^{3}=_\quad i^{4}=$
Complex conjugate:
If a complex number is a zero, they always come in \qquad and are \qquad

EXAMPLES

A) Identify the zeros of the function. B) Find the \boldsymbol{x}-intercepts of its graph. C) Write the polynomial in standard form. Show work!

1. $f(x)=(x+3)(x-4)(x+3 i)(x-3 i)$
A) Write a polynomial function of minimum degree in factored form with real coefficients whose zeros include those listed. B) Find the degree of the polynomial (\# of zeros). C) Identify the \underline{x} intercepts. Show work!
2. $-3,1-4 i$
3. 3 (multiplicity of 2), $2+i$ (multiplicity of 1)
4. $f(x)=x^{4}-3 x^{2}-4$

Using the given zero, find all the remaining zeros of each polynomial. Write the function in factored form. Show work!
5. $2 i$ is a zero of $f(x)=3 x^{5}-2 x^{4}+6 x^{3}-4 x^{2}-24 x+16$

