SM 3H	DATE:	SECTION:			
OBJECTIVE:					
<u>Vocabulary</u>					
Linear factorization:					
Complex numbers:					
Standard Form:		Example:			
Imaginary numbers:					
Example:		i =	i ² =	i ³ =	i ⁴ =
Complex conjugate:					
If a complex number is a zero, they <u>always</u> come in and are					

EXAMPLES

A) Identify the <u>zeros</u> of the function. B) Find the <u>x-intercepts</u> of its graph. C) Write the polynomial in <u>standard form</u>. Show work!

1. f(x) = (x+3)(x-4)(x+3i)(x-3i)

A) Write a polynomial function of minimum degree in <u>factored form</u> with real coefficients whose zeros include those listed. B) Find the <u>degree</u> of the polynomial (# of zeros). C) Identify the <u>x-intercepts</u>. Show work!

2.
$$-3$$
, $1 - 4i$ 3. 3 (multiplicity of 2), $2 + i$ (multiplicity of 1)

Find all complex zeros of each polynomial. Write the function in factored form. Show work!

4. $f(x) = x^4 - 3x^2 - 4$

Using the given zero, find all the remaining zeros of each polynomial. Write the function in factored form. Show work!

5. 2i is a zero of $f(x) = 3x^5 - 2x^4 + 6x^3 - 4x^2 - 24x + 16$