Relation: A correspondence between two sets, called the domain and the range.
Domain: The set of inputs (the \qquad -values) of a relation.

Range: The set of outputs (the \qquad -values) of a relation.

Function: A relation in which for each input there is \qquad output. Each element of the domain corresponds to exactly one element of the range.

Function Machine Rules:

1. The machine only accepts inputs that are part of the domain.
2. The machine gets confused if there is more than one possible output for any one input. It only works if there is only one output for each input.

Examples: Express the relation shown in each map as a set of ordered pairs. Decide whether each relation is a function. If it is a function, state the domain and range.
a)

b)

Examples: For each relation, write the domain and range and determine whether the relation is a function.
a) $\{(2,5)(2,6)(4,7)(6,9)\}$
c) $\{(4,9)(6,7)(8,9)(10,11)\}$

Function Notation

We often use the letters f, g, and h to represent functions. The function machine to the right represents the function $y=f(x)$.

- $\quad f$ is the name of the function. It is the rule that relates x and y.
- $\quad x$ represents the input, called the independent variable or argument.
- y or $f(x)$ represents the output, called the dependent variable (because the value of y depends on the value of x that is used as
 an input).
$f(x)$ is read " f of x," and means "the value (output) of the function f when the input is x."

$f(x)$ DOES NOT mean f times x :

Example: For the function $f(x)=-x+9$, evaluate the following:
a) $f(2)$
b) $3 f(x)$
c) $f(3 x)$
d) $f(-x)$
e) $-f(x)$
f) $f(x)+2$

Example: For the function $f(x)=3 x^{2}-5 x$, evaluate the following:
a) $f(2)$
b) $3 f(x)$
c) $f(3 x)$
d) $f(-x)$
e) $-f(x)$
f) $f(x+2)$

Domain of a Function

The domain of a function $f(x)$ is the set of all inputs x.

- If the function is listed in a table or as a set of ordered pairs, the domain is the set of all first coordinates.
- If the function is described by a graph, the domain is the set of all x-coordinates of the points on the graph.
- If the function is described by an equation, the domain is the set of all real numbers for which $f(x)$ is a real number. Figure out if there are any x-values that cause "problems" (zero in a denominator, square root of a negative, etc.) when you plug them into the function. If so, these numbers are not part of the domain.
- If the function is used in an application, the domain is the set of all numbers that make sense in the problem.

(Tips for finding domain: (domain restrictions)

1. If the equation has fractions, exclude any numbers that give a zero in a denominator.
2. If the equation has an even root, exclude any numbers that cause the expression under the root to be negative.

Examples: Determine the domain of $f(x)$.
a) $f(x)=x^{2}-x$
b) $f(x)=\frac{4 x}{x^{2}-9}$
c) $f(x)=|x-5|$
d) $f(x)=\sqrt{-5 x+7}$
e) $f(x)=\frac{1}{\sqrt{x+2}}$
f) $f(x)=\frac{\sqrt{x-3}}{(x+4)(x-6)}$

Sums, Differences, Products, and Quotients of Two Functions

The sum $f+g$ is defined by $(f+g)(x)=f(x)+g(x)$
The difference $f-g$ is defined by $(f-g)(x)=f(x)-g(x)$
The product $f \cdot g$ is defined by $(f \cdot g)(x)=f(x) \cdot g(x)$
The quotient $\frac{f}{g}$ is defined by $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, g(x) \neq 0$
The domain of $f+g, f-g$, or $f \cdot g$ consists of all the numbers x that are in the domains of both f and g. The domain of f / g consists of all the numbers x for which $g(x) \neq 0$ that are in the domains of both f and g.

Examples: Find the following and determine the domain given the functions
$f(x)=\frac{x}{x+3}$ and $g(x)=\frac{x+8}{x+3}$.
a) $(f+g)(x)$
b) $(f-g)(x)$
c) $(f \cdot g)(x)$
d) $\left(\frac{f}{g}\right)(x)$

