Objective:

Analyze the graph

Domain:
Range:
x-intercept(s):
y-intercept:
Relative or local maximum point(s):
Relative or local maximum value(s):
Relative or local minimum point(s):
Relative or local minimum value(s):
Absolute maximum point(s):
Absolute maximum value(s):
Absolute minimum point(s):
Absolute minimum value(s):
Increase interval:
Decrease interval:
Constant interval:
Positive interval:
Negative interval:
Symmetry:
End behavior: $\quad \lim _{x \rightarrow \infty} f(x)=\quad \lim _{x \rightarrow-\infty} f(x)=$

Find symmetry algebraically

Even--- $f(x)=f(-x)$
$\operatorname{Odd}---f(x)=f(-x)$

Example:
$f(x)=2 x^{4}-3 x^{2}+4$

Types of symmetry:

$$
f(x)=-2 x^{7}-5 x^{5}+7 x^{3}+2
$$

A)

B)

a) At what number(s), if any, does f have a local maximum?
b) What are the local maxima?
c) At what number(s), if any, does f have a local minimum?
d) What are the local minima?
e) List the intervals where f is increasing and the intervals where f is decreasing.
f) List the intervals where f is positive and the intervals where f is negative.

Find the Average Rate of Change of a Function

To find the average rate of change of a function between any two points on its graph, calculate the slope of the line containing the two points.

If a and $b, a \neq b$, are in the domain of a function $y=f(x)$, the average rate of change of \boldsymbol{f} from a to b is defined as:

Average rate of change $=\frac{\Delta y}{\Delta x}=\frac{f(b)-f(a)}{b-a} \quad a \neq b$

The symbol Δy above is "the change in y," and Δx is the "change in x." The average rate of change of f is the change in y divided by the change in x.

Example:

Find the average rate of change of $f(x)=3 x^{2}$ for the following intervals:
a) From 1 to 3 or $[1,3]$
b) From 1 to 5 or $[1,5]$
c) From 1 to 7 or $[1,7]$
d)

Years	Cost
1	2
2	3
3	5
4	8
5	9

[2,5]

