2.5 Transformations

\qquad Date \qquad Period \qquad

Match each parent graph with the correct parent function and name the function.
1.

2.

3.

Name: \qquad
Name: \qquad
Name: \qquad
4.

Name: \qquad
5.

Name: \qquad
6.

Name: \qquad
7.

Name: \qquad _
8.

Name: \qquad
a) $f(x)=\sqrt{x}$
b) $f(x)=x^{3}$
c) $f(x)=\frac{1}{x}$
d) $f(x)=x^{2}$
e) $f(x)=\sqrt[3]{x}$
f) $f(x)=|x|$
g) $f(x)=x$
h) $f(x)=\operatorname{int}(x)$
9. Suppose that the graph of a function f is known. Then the graph of $y=f(x-2)$ may be obtained by a(n)
\qquad shift of the graph f to the \qquad a distance of 2 units.
10. Suppose that the graph of a function f is known. Then the graph of $y=f(-x)$ may be obtained by a reflection about the \qquad - axis of the graph of the function $y=f(x)$.
11. Suppose that the graph of a function g is known. The graph of $y=g(x)+2$ may be obtained by a
\qquad shift of the graph of g \qquad a distance of 2 units.
12. True of False The graph of $y=-f(x)$ is the reflection about the x -axis of the graph of $y=f(x)$.
13. True of False To obtain the graph of $f(x)=\sqrt{x+2}$, shift the graph of $y=\sqrt{x}$ horizontally to the right 2 units.
14. True of False To obtain the graph of $f(x)=x^{3}+5$, shift the graph of $y=x^{3}$ vertically up 5 units.

Describe how the graph of the given function can be transformed into the equations for a-c.
15. $f(x)=x^{2}$
16. $f(x)=|x|$
a) $y=-x^{2}$
a) $y=-3|x|+4$
b) $y=\frac{1}{2} x^{2}$
b) $y=|x-7|+2$
c) $y=x^{2}+5$
c) $y=\frac{1}{4}|x+1|$
17. $f(x)=\sqrt{x}$
18. $f(x)=\frac{1}{x}$
a) $y=\sqrt{x+5}-1$
a) $y=\frac{1}{x-4}+2$
b) $y=\sqrt{2 x}+7$
b) $y=-3\left(\frac{1}{x}\right)-8$
c) $y=\frac{1}{3} \sqrt{x-1}$
c) $y=\frac{1}{-(x+7)}$

Sketch the graphs of each function by hand. Use a table with the key points for the parent function then perform the transformations that will give the new points in a new table. State the transformations.
19. $f(x)=\sqrt[3]{x+2}$
20. $f(x)=2 x^{3}-3$

21. $f(x)=-\sqrt{x-2}$
22. $f(x)=-2|x-1|+2$

Find the equation of the reflection of f across the a) x-axis and b) the y-axis.
23. $f(x)=x^{3}-2 x^{2}-3 x+5$
24. $f(x)=3 \sqrt{x+2}-5$
25. $f(x)=\sqrt[3]{27 x}$
26. $f(x)=-2|x-4|$

Describe a basic parent function and a sequence of transformations that can be used to produce a graph of the given function.
27. $f(x)=-(x-4)^{3}-2$
28. $f(x)=3 \sqrt{-x}+5$
29. $f(x)=-2(x-1)^{2}+5$
30. $f(x)=|5 x|-3$

Write the equation for the new function that is obtained from the given transformations on the parent function.
31. $f(x)=\sqrt[3]{x}$: a vertical stretch by a factor of 2 , horizontal shift left 3 .
32. $f(x)=|x|$: a shift left 2 units, then a vertical stretch by a factor of 3 , then a shift up 4 units.
33. The graph of the function f is illustrated. Use the graph of f as the first step toward graphing each of the following function.

a.) $g(x)=f(x)+3$
b.) $g(x)=f(x+2)$
c.) $g(x)=-f(x)$
d.) $g(x)=f(x+1)-2$
e.) $g(x)=\frac{1}{2} f(x)$
f.) $g(x)=f(-x)$
g.) $g(x)=f(2 x)$
a.)
b.)
c.)
d.)

e.)

f.)

g.)

34. Suppose $(1,3)$ is a point on the graph of $f(x)$.
a.) What point is on the graph of $y=f(x+3)-5$
b.) What point is on the graph of $y=-2 f(x-2)+1$
c.) What point is on the graph of $y=f(-2 x+4)$

Divide using long division.
35. $\frac{x^{2}-2 x-30}{x+5}$

Solve.
36. $5 x-8=-x-4$

