OBJECTIVE:

Vertical Asymptotes:

How many can you have?
How do you find V. A.?

Vertical asymptotes are the \qquad .

EX.
$\frac{5 x+1}{2 x^{2}-x-3}$

Horizontal Asymptotes:

Oblique Asymptotes:

How many can you have?
How do you find H. A. or O.A.?
1.
2.
3.

EX.
a) $\frac{5 x+6}{2 x^{2}-1}$
b) $\frac{x^{2}+3 x-4}{x+1}$
c) $\frac{9 x^{2}-4}{2 x^{2}-x-3}$

x-intercept(s):

How many can you have?
How do you find the x-intercept(s)?

EX.
$\frac{3 x+1}{2 x^{2}-1}$
y-intercept(s):

How many can you have?
How do you find the y-intercept(s)?

EX.
$\frac{x^{2}+3 x+2}{4 x^{2}-1}$

Hole(s):

How many can you have?
How do you find the hole(s)?

EX.
$\frac{5 x^{2}-5}{x^{2}+4 x+3}$

Sign Arrays:

How do you make a sign array?

EX.
$\frac{x+1}{x^{2}-4}$

EX. Find the asymptotes, intercepts, and make a sign array for the following function.
a) $f(x)=\frac{3 x+4}{x^{2}-x-12}$

b) $f(x)=\frac{x^{2}+3 x-4}{x-6}$

c) $f(x)=\frac{2 x-6}{2 x^{2}-5 x-3}$

EX. Identify key features of a rational function.
a)

Domain:
Range:
x-intercept(s):
y-intercept:
Increasing:
Decreasing:
Constant:

Vertical Asymptote(s):
b)

Range:
x-intercept(s):
y-intercept:
Increasing:
Decreasing:
Constant:

Vertical Asymptote(s):

Positive:
Negative:
Maximums / minimums:
Symmetry:
End Behavior/Limits:
$\lim _{x \rightarrow-\infty} f(x)=\quad \lim _{x \rightarrow \infty} f(x)=$
$\lim _{x \rightarrow 0^{-}} f(x)=\quad \lim _{x \rightarrow 0^{+}} f(x)=$
$\lim _{x \rightarrow 4^{-}} f(x)=\quad \lim _{x \rightarrow 4^{+}} f(x)=$
Horizontal Asymptote:

Positive:
Negative:
Maximums / minimums:
Symmetry:
End Behavior/Limits:
$\lim _{x \rightarrow \infty} f(x)=\quad \lim _{x \rightarrow 0^{-}} f(x)=$

$$
\begin{aligned}
& \lim _{x \rightarrow-5^{-}} f(x)= \\
& \lim _{x \rightarrow-5^{+}} f(x)= \\
& \lim _{x \rightarrow 1^{-}} f(x)=\quad
\end{aligned} \lim _{x \rightarrow 1^{+}} f(x)=
$$

Horizontal Asymptote:

