Objective:

REVIEW: Simplify the following and fill in the blank:

a) $\frac{10}{0}$

- b) $\frac{0}{10}$
- c) Anything divided by zero is ______.
- d) The denominator (bottom) of a fraction can't equal ______.

EXAMPLES: State the restrictions for each rational equation:

a)
$$\frac{5}{x+4} = 2$$

b)
$$\frac{4x}{8x-3} = \frac{7}{x}$$

c)
$$\frac{5x-2}{5} = \frac{2x}{5}$$

d)
$$\frac{x-2}{x^2} = \frac{1}{2x}$$

e)
$$\frac{x+9}{x^2+6x+8} = \frac{4x+1}{x-6}$$
 f) $\frac{7x+4}{x^2+3x} = \frac{1}{x}$

f)
$$\frac{7x+4}{x^2+3x} = \frac{1}{x^2}$$

Steps for Solving Rational Equations:

- 1. Factor the denominator and find Lowest Common Denominator (LCD).
- 2. Multiply the entire equations by the LCD to get rid of the fractions.
- 3. Solve for the variable.
- 4. State the restrictions and check against your answers.

EXAMPLES: State the restrictions. Solve the equation algebraically. Identify the extraneous solutions. Show work!

1.
$$1 - \frac{1}{5x} = \frac{4}{5x}$$

2.
$$4 + \frac{6}{n-1} = \frac{1}{n-1}$$

2.
$$4 + \frac{6}{n-1} = \frac{1}{n-1}$$
 3. $\frac{1}{x+3} + \frac{x+2}{x^2+3x} = \frac{1}{x}$

4.
$$\frac{5}{x^2 - 7x + 12} - \frac{2}{3 - x} = \frac{5}{x - 4}$$

4.
$$\frac{5}{x^2 - 7x + 12} - \frac{2}{3 - x} = \frac{5}{x - 4}$$
 5. $\frac{2}{x - 3} + \frac{6}{x + 5} = \frac{2}{x^2 + 2x - 15}$ 6. $\frac{x - 4}{x} - \frac{3}{x + 1} + \frac{4}{x^2 + x} = 0$

6.
$$\frac{x-4}{x} - \frac{3}{x+1} + \frac{4}{x^2+x} = 0$$

Steps for Solving Inequalities:

- 1. Set inequality $>, <, \ge$, or \le to 0.
- 2. Factor the numerator and denominator.
- 3. Find the vertical asymptotes and the x-coordinate of any holes.
- 4. Find the *x*-intercepts.
- 5. Make a sign array to find where the graph is positive and negative.
- 6. Write the answer in interval notation.
 - >,≥ mean you want the positive sections
 - <, ≤ mean you want the negative sections
 - <, > mean the x-intercepts are not included so you put parentheses on the answer ()
 - \leq , \geq mean the x-intercepts are included so you put brackets on the answer []
 - Asymptotes and holes are ALWAYS parentheses!

EXAMPLES: Solve each inequality using sign charts. Write answers in interval notation.

1.
$$x^2 + 5x - 24 > 0$$

$$2. \frac{x^2 - 9}{x^2 + 4x - 12} \le 0$$

$$3. \ \frac{(x+2)(4-x)}{(x+1)^2} < 0$$

4.
$$-2 < 3x - 1 \le 8$$

5.
$$(x+4)\sqrt{x+2} \ge 0$$