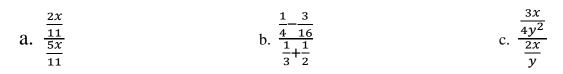


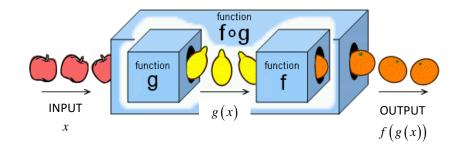
Section:

Objective:


Complex Fractions

A complex fraction is when there is more than one rational fraction within a rational fraction.

To simplify a complex fraction:

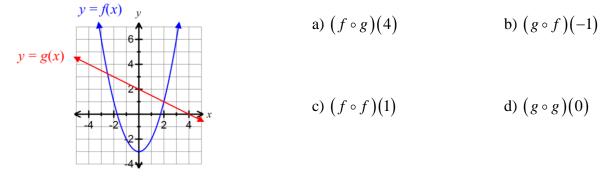

- 1. Factor denominators
- 2. Find LCD for top fraction and LCD for bottom fraction
- 3. Multiply to get LCD
- 4. Add numerators of both fractions
- 5. Do stay change flip
- 6. Factor
- 7. Cross off ones
- 8. Write what's left

EX. Simplify.

d.
$$\frac{3x - \frac{5x}{2x - 3}}{3x + \frac{5x}{2x + 3}}$$
 e. $\frac{\frac{2}{x} + \frac{2}{4x^2 - 1}}{2x + \frac{1}{2x - 1}}$ f. $\frac{2 - \frac{4}{x^2}}{x - 2}$

Composite Function: In a composite function, one function is performed, and then a second function is performed on the result of the first function. $(f \circ g)(x) = f(g(x))$ and $(g \circ f)(x) = g(f(x))$.

Hints:


- Work inside out. Plug the input into the inside function, then plug the result into the outside function.
- $(f \circ g)(x) = f(g(x))$ is not the same as $(f \cdot g)(x) = f(x) \cdot g(x)$. • Composition of functions

Multiplication of functions

Example: Evaluate each expression using the values given in the table.

x	-3	-2	-1	0	1	2	3	a) $(f \circ g)(-2)$	b) $(g \circ f)(-1)$
<i>f</i> (<i>x</i>)	-7	-5	-3	-1	3	5	7		
x f(x) g(x)	8	3	0	-1	0	3	8	c) $(f \circ f)(1)$	d) $(g \circ g)(0)$

Example: Evaluate each expression using the graph.

Example: $f(x) = 2x^2$ and $g(x) = 1 - 3x^2$ a) Find $(f \circ g)(4)$ b) Find $(g \circ f)(2)$

c) Find $(f \circ f)(1)$ d) Find $(g \circ g)(0)$

Domain of a Composite Function

The domain of $f \circ g$ is the set of all numbers x in the domain of g such that g(x) is in the domain of f.

Example: Find the domain of the composite function $f \circ g$.

a)
$$f(x) = \frac{5}{x+4}$$
, $g(x) = \frac{8}{x}$
b) $f(x) = \frac{x}{x-1}$, $g(x) = \frac{x+5}{x-4}$

Example: f(x) = x+1 and $g(x) = x^2+4$ a) Find $(f \circ g)(x)$ and its domain.

b) Find $(g \circ f)(x)$ and its domain.

Example:
$$f(x) = \frac{1}{x+3}$$
 and $g(x) = -\frac{2}{x}$
a) Find $(f \circ g)(x)$ and its domain.

b) Find $(g \circ f)(x)$ and its domain.

c) Find $(f \circ f)(x)$ and its domain.

d) Find $(g \circ g)(x)$ and its domain.

Example: Show that $(f \circ g)(x) = (g \circ f)(x) = x$. a) f(x) = 4x; g(x) = x/4b) f(x) = 4-3x; $g(x) = \frac{1}{3}(4-x)$

Example: Find functions f and g such that $f \circ g = H$. a) $H(x) = (x^2 + 1)^4$ b) H(x) = |2x+1|