

Date:

Section:

Objective:

Vocabulary:

Inverse:

Inverse operation:

Inverse property:

One-to-one property:

Way to find one-to-one:

To find the inverse using a table: ordered pairs:

Example 1:

f(x)		$f^{-1}(x)$	
x	у	x	у
5	5		
7.5	6		
-9	-8		
15	-5		
-2	3		

To find the inverse using a graph: WAY 1)

WAY 2)

Example 3:

Which of the above examples, #1, #2, or #3, are one-to-one and why?

To find the inverse using

Example 2:

$$\{(1,1),(2,4),(3,9),(0,0),(-1,1),(-2,4)\}$$

Find the inverse function, domain, and range.

Example 1:

Example 2:

$$f(x) = -3x + 1 \qquad \qquad f(x) = -2\sqrt{3-x}$$

Example 3:

Example 4:

$$f(x) = \sqrt[3]{x+2} - 3 \qquad \qquad f(x) = \frac{2x+3}{5x-4}$$

To verify that two functions are inverses, show that _____

Example 1:

Verify that the inverse of $f(x) = \frac{2}{x+5}$ is $f^{-1}(x) = \frac{2}{x} - 5$.

Example 2:

Verify that the inverse of $f(x) = \sqrt[3]{2x}$ is $f^{-1}(x) = \frac{x^3}{2}$.