Objective:

Question: What is the inverse of an exponential function? How do you solve for a variable that is in an exponent?

Find the inverse of $f(x)=2^{x}$.

1. Replace $f(x)$ with y. \qquad
2. Interchange x and y. \qquad
3. Solve for y.
4. Replace y with $f^{-1}(x)$ \qquad
We need a new symbol to replace the words: "The exponent to which we raise 2 to get x ":
$\log _{2} x$ means "the exponent to which we raise 2 to get x."
Pronounced "the logarithm, base 2, of x " or "log, base 2, of x "

*LOGARITHMS ARE EXPONENTS! \star

Logarithm: $\log _{b} a$ means \qquad

- \boldsymbol{b} is called the \qquad
- \boldsymbol{a} is called the \qquad
The logarithmic function of base a, where $a>0$ and $a \neq 1$ is denoted by $y=\log _{a} x$.

Formula for changing logarithmic functions to exponential functions:

Example: Change each exponential expression to an equivalent expression involving a logarithm.
a) $5^{x}=625$
b) $x^{3}=64$
c) $3^{2}=x$

Example: Change each logarithmic expression to an equivalent expression involving an exponent.
a) $\log _{3} x=5$
b) $\log _{e} 5=x$
c) $\log _{m} 2=n$

Evaluating Logarithms: It is helpful to replace "log" with the word "power".

- Instead of " $\log _{2} 8$," think "power 8 ." Ask yourself, what power of 2 equals 8 ?
- The answer would be \qquad because \qquad
Example: Find the exact value of
a) $\log _{3} 9$
b) $\log _{2} 32$
c) $\log _{6} 1$
d) $\log _{5} \frac{1}{125}$
e) $\log _{7} \sqrt{7}$

Domain of a Logarithmic Function

The logarithmic function $y=\log _{a} x$ is \qquad , $y=a^{x}$.

Domain of the logarithmic function $=$ \qquad $=(\ldots, \ldots)$

Range of the logarithmic function $=$ \qquad $=(\ldots, \square)$

$$
y=\log _{a} x \text { (defining equation: } x=a^{y} \text {) }
$$

Domain: $(0, \infty) \quad$ Range: all real numbers
\star Caution! You can't take the log of zero or of a negative because it is impossible to get zero or a negative by raising a positive base to an exponent. The argument of a logarithmic function must be greater than zero.

Example: Find the domain of each logarithmic function by \qquad
a) $f(x)=\log _{2}(x+3)$
b) $g(x)=\log _{5}\left(\frac{1+x}{1-x}\right)$
c) $h(x)=\log _{\frac{1}{2}}|x|$
d) $f(x)=\log _{3}(5 x-1)$
e) $f(x)=\log _{7}\left(\frac{1}{2 x}\right)$

$$
f(x)=\log _{a} x, a>1
$$

$$
f(x)=\log _{a} x, 0<a<1
$$

Properties of the Logarithmic Function $f(x)=\log _{a} x$

1. The \qquad is the set of all positive real numbers; the \qquad is the set of all real numbers.
2. The \qquad is 1 . There is no \qquad .
3. The \qquad or \qquad is a vertical asymptote of the graph.
4. The logarithmic function is \qquad if $0<a<1$ and \qquad if $a>1$. The function is one-to-one.
5. The graph of f contains the points \qquad , \qquad , and \qquad .
6. The graph of f is smooth and continuous, with no corners, gaps, or cusps.
\star Note: It is often easier to graph a logarithmic function if you rewrite it as an exponential function first.

Graphing Logarithmic Functions using transformations:

1. .
2. .
3. .

Examples: Write the transformations of each function. Graph each function using the 3 key points. Find domain, range, and vertical asymptote.
a) Graph $f(x)=\log _{2}(x-3)+2$
b) Graph $f(x)=-2 \log _{10}(x)-3$

c) Graph $f(x)=\log _{3}(-x+1)$

d) Graph $f(x)=-\log _{4}(2 x+1)+3$

Natural Logarithms: If the base of a logarithmic function is the number \qquad , then we have the natural logarithm function (abbreviated \ln). That is, \qquad is inverse of \qquad -.

$$
f(x)=\ln a=
$$

\qquad

Example: $f(x)=-\ln (x+3)$
a) Find the domain of the logarithmic function.
b) Write the transformations
b) Graph $f(x)$ using the 3 key points
c) Find the range and vertical asymptote of f.

Common Logarithmic Function: If the base of a logarithmic function is the number \qquad then we have the common logarithmic function. If the base a of the logarithmic function is not indicated, it is understood to be 10. That is, \qquad is inverse of \qquad

$$
f(x)=\log a=
$$

\qquad
Example: $f(x)=2 \log (x-3)$
a) Find the domain of the logarithmic function.
b) Write the transformations
b) Graph $f(x)$ using the 3 key points
c) Find the range and vertical asymptote of f.

Use a calculator to evaluate each expression. Round your answer to three decimal places.
a. $\quad \log 3.54$
b. $\quad \log (-22)$
c. $\ln \frac{1}{4}$
d. $\frac{\ln 4}{6}$
e. $\frac{\log 2+\log 6}{\ln 7-\ln 5}$

Solving Logarithmic Equations

Many equations can be solved by rewriting logarithms as exponential functions or rewriting exponential functions as logarithms.
\star When solving logarithmic equations, remember that in the expression $\log _{a} M, a$ and M must be positive and $a \neq 1$. Be sure to check each solution in the original equation and discard any that are extraneous.

Examples: Solve the logarithmic equations
a) $\log _{3}(3 x-2)=2$
b) $\log _{x}\left(\frac{1}{8}\right)=3$
c) $10^{2 x-7}=3$
d) $e^{3 x-2}=7$
e) $\log _{2}\left(x^{2}+2 x\right)=3$
f) $8 e^{x+2}=3$

