

Date:

Section:

Objective:

Question: What is the inverse of an exponential function? How do you solve for a variable that is in an exponent?

Find the inverse of $f(x) = 2^x$.

- 1. Replace f(x) with y.
- 2. Interchange *x* and *y*.
- 3. Solve for *y*.
- 4. Replace y with $f^{-1}(x)$

We need a new symbol to replace the words: "The exponent to which we raise 2 to get x":

 $\log_2 x$ means "the exponent to which we raise 2 to get x."

Pronounced "the logarithm, base 2, of x" or "log, base 2, of x"

★LOGARITHMS ARE EXPONENTS!★

Logarithm: log_b a means _____

- **b** is called the _____
- a is called the _____

The *logarithmic function of base a*, where a > 0 and $a \ne 1$ is denoted by $y = \log_a x$.

 $\label{lem:condition} Formula \ for \ changing \ logarithmic \ functions \ to \ exponential \ functions:$

Example: Change each exponential expression to an equivalent expression involving a logarithm.

a)
$$5^x = 625$$

b)
$$x^3 = 64$$

c)
$$3^2 = x$$

Example: Change each logarithmic expression to an equivalent expression involving an exponent.

a)
$$\log_3 x = 5$$

b)
$$\log_{e} 5 = x$$

c)
$$\log_m 2 = n$$

Evaluating Logarithms: It is helpful to replace "log" with the word "power".

- Instead of "log₂ 8," think "power₂ 8." Ask yourself, what power of 2 equals 8?
 - The answer would be _____ because _____

Example: Find the exact value of

- a) $\log_3 9$

- b) $\log_2 32$ c) $\log_6 1$ d) $\log_5 \frac{1}{125}$ e) $\log_7 \sqrt{7}$

Domain of a Logarithmic Function

The logarithmic function $y = \log_a x$ is _______, $y = a^x$.

Domain of the logarithmic function = _____ = (___, ___)

Range of the logarithmic function = _____ = (____, ____)

 $y = \log_a x$ (defining equation: $x = a^y$)

Domain: $(0, \infty)$ Range: all real numbers

★ Caution! You can't take the log of zero or of a negative because it is impossible to get zero or a negative by raising a positive base to an exponent. The argument of a logarithmic function must be greater than zero.

Example: Find the domain of each logarithmic function by _____

a) $f(x) = \log_2(x+3)$

b) $g(x) = \log_5\left(\frac{1+x}{1-x}\right)$

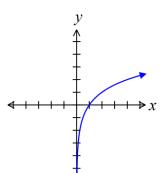
c) $h(x) = \log_{\frac{1}{2}} |x|$

$$d) \quad f(x) = \log_3(5x - 1)$$

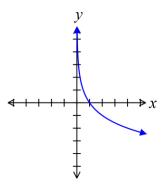
e)
$$f(x) = \log_7\left(\frac{1}{2x}\right)$$

Graphs of Logarithmic Functions

$$f(x) = \log_a x, \ a > 1$$



$$f(x) = \log_a x, \ 0 < a < 1$$



Properties of the Logarithmic Function $f(x) = \log_a x$

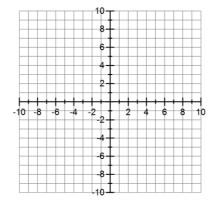
- 1. The ______ is the set of all positive real numbers; the _____ is the set of all real numbers.
- 2. The ______ is 1. There is no ______.
- 3. The _____ or ____ is a vertical asymptote of the graph.
- 4. The logarithmic function is _____ if 0 < a < 1 and _____ if a > 1. The function is one-to-one.
- 5. The graph of f contains the points ______, ____, and ______.
- 6. The graph of f is smooth and continuous, with no corners, gaps, or cusps.
- ★ Note: It is often easier to graph a logarithmic function if you rewrite it as an exponential function first.

Graphing Logarithmic Functions using transformations:

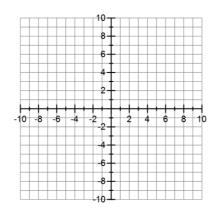
- 1. .
- 2. .
- 3. .

Examples: Write the transformations of each function. Graph each function using the 3 key points. Find domain, range, and vertical asymptote.

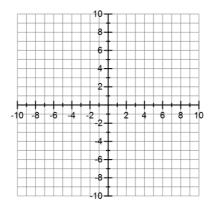
a) Graph
$$f(x) = \log_2(x-3) + 2$$



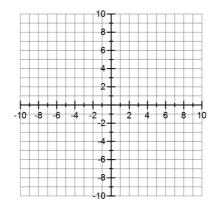
b) Graph
$$f(x) = -2\log_{10}(x) - 3$$



c) Graph $f(x) = \log_3(-x+1)$



d) Graph $f(x) = -\log_4(2x+1) + 3$

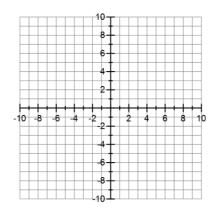


Natural Logarithms: If the base of a logarithmic function is the number _____, then we have the natural logarithm function (abbreviated ln). That is, _____ is inverse of _____.

$$f(x) = \ln a = \underline{\hspace{1cm}}$$

Example: $f(x) = -\ln(x+3)$

- a) Find the domain of the logarithmic function.
- b) Write the transformations
- b) Graph f(x) using the 3 key points
- c) Find the range and vertical asymptote of f.

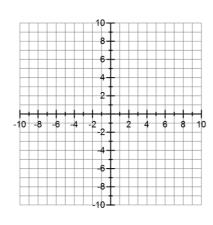


Common Logarithmic Function: If the base of a logarithmic function is the number $__$, then we have the common logarithmic function. If the base a of the logarithmic function is not indicated, it is understood to be 10. That is, $__$ is inverse of $_$

$$f(x) = \log a = \underline{\hspace{1cm}}$$

Example: $f(x) = 2\log(x-3)$

- a) Find the domain of the logarithmic function.
- b) Write the transformations
- b) Graph f(x) using the 3 key points
- c) Find the range and vertical asymptote of f.



Use a calculator to evaluate each expression. Round your answer to three decimal places.

c.
$$\ln \frac{1}{4}$$

d.
$$\frac{\ln 4}{6}$$

e.
$$\frac{\log 2 + \log 6}{\ln 7 - \ln 5}$$

Solving Logarithmic Equations

Many equations can be solved by rewriting logarithms as exponential functions or rewriting exponential functions as logarithms.

***** When solving logarithmic equations, remember that in the expression $\log_a M$, a and M must be positive and $a \ne 1$. Be sure to check each solution in the original equation and discard any that are extraneous.

Examples: Solve the logarithmic equations

a)
$$\log_3(3x-2) = 2$$

b)
$$\log_{x}\left(\frac{1}{8}\right) = 3$$

c)
$$10^{2x-7} = 3$$

d)
$$e^{3x-2} = 7$$

e)
$$\log_2(x^2 + 2x) = 3$$

f)
$$8e^{x+2} = 3$$