## Objective:

Starter: (Round answers to the nearest tenth.)

1. Solve for x .

$$
\frac{2}{6}=\frac{3}{x+7}
$$

2. Find the measure of the angle indicated.


When do you use sine, cosine, and tangent to solve for a missing side or angle of a triangle?

What happens if the triangle is an oblique triangle?

An $\qquad$ is a triangle without a right angle. To solve an oblique triangle, we must know three pieces of information, at least one of which must be the length of a side. (Three angles define an infinite number of triangles).

## A. Law of Sines -

**Use when you have ASA, AAS, or SSA

ASA triangle


AAS triangle


SSA triangle (ambiguous case)


## Law of sines:


or

Examples: Identify the type of triangle. Then find each measurement indicated using law of sines. Round your answers to the nearest tenth.

1. Find $m \angle A$

2. Find $m \angle C$

3. Find $A B$


If the picture is not draw for an SSA triangle, you do not know how the triangle is put together.
SSA (The Ambiguous Case): If you know two sides and a non-included angle (an angle that is not between the sides), there may be zero, one, or two possible triangles that fit the given measurements.

Solve $\triangle A B C$ given that $\mathrm{a}=6, \mathrm{~b}=7$, and $\angle A=30^{\circ}$. Two triangles are possible with the given information.


To determine if there is a $2^{\text {nd }}$ valid angle:

1. See if you are given two sides and the angle not in between (SSA). This is the situation that may have 2 possible answers.
2. Find the value of the unknown angle.
3. No triangle:

One triangle:

Two triangles:
$\qquad$ !!!!!!!!

## Examples:

а) $B=38^{\circ}, b=2.9, c=5.9$
b) $B=38^{\circ}, b=6.4, c=5.9$

Examples: Solve each triangle. Round your answers to the nearest tenth. Hint: Draw the triangle and identify the type of triangle.


$$
m \angle A=
$$

$\qquad$ $m \angle A=$ $\qquad$
$\qquad$
$m \angle B=$ $\qquad$
$\mathrm{b}=$ $\qquad$
$m \angle B=$ $\qquad$
$\mathrm{b}=$ $\qquad$

$$
m \angle C=
$$

$\mathrm{c}=$ $\qquad$
$\mathrm{c}=$ $\qquad$
3. $m \angle B=61^{\circ}, m \angle C=108^{\circ}, a=5 \mathrm{yd}$
$m \angle A=$ $\qquad$ $a=$ $\qquad$
$\qquad$
$m \angle B=$
$\mathrm{b}=$ $\qquad$
$m \angle B=$ $\qquad$
$\mathrm{b}=$ $\qquad$
$m \angle C=$ $\qquad$
$\mathrm{c}=$ $\qquad$
4. $m \angle C=36^{\circ}, b=19 \mathrm{~m}, c=20 \mathrm{~m}$
$\qquad$ $a=$ $\qquad$
$m \angle C=$ $\qquad$
$\mathrm{c}=$ $\qquad$

## Steps for solving Application Problems

1) Read the problem
2) Define a variable
3) Write an equation
4) Solve the equation
5) Check your answer

Complementary angles-

Supplementary angles-

How to solve if have 2 sides and a right angle-

Triangle sum theorem-

Angle of elevation-

Angle of depression-

Bearing: The measure of an angle that describes the direction of a ray is called the bearing. Bearing is the clockwise angle from due north.

Another way to express bearing is to describe the acute angle that the ray makes with a ray pointing due north or south. For example:
$N 60^{\circ} \mathrm{E}$ is a bearing of $60^{\circ}$ east of north
$S 30^{\circ} \mathrm{E}$ is a bearing of $30^{\circ}$ east of south
$S 45^{\circ} \mathrm{W}$ is a bearing of $45^{\circ}$ west of south


Example: During an important NATO exercise, an F-14 Tomcat left the carrier Nimitz on a course with a bearing of $34^{\circ}$ and flew 400 miles. Then the $\mathrm{F}-14$ flew for some distance on a course with a bearing of $162^{\circ}$. Finally, the plane flew back to its starting point on a course with a bearing of $308^{\circ}$. What distance did the plane fly on the final leg of the journey? Round to the nearest tenth of a mile.

