7.4 Graphing of Sine & Cosine Functions

SCORE:

/

Name _____

2023-2024

_____ Date _____

Period ____

Find the exact value of each trigonometric function without a calculator or table.

$$1. \sin \frac{\pi}{6}$$

2.
$$\sec \frac{\pi}{3}$$

3.
$$\cos \frac{\pi}{2}$$

4.
$$\cot \frac{\pi}{6}$$

5.
$$\tan \frac{\pi}{4}$$

6.
$$\csc \frac{\pi}{3}$$

Find the coordinates of each point after it is moved a) $\frac{\pi}{4}$ units to the right and b) $\frac{\pi}{3}$ units to the left.

7.
$$\left(\frac{\pi}{2},3\right)$$

8.
$$\left(\frac{\pi}{3}, 0\right)$$

Find the coordinates of each point after it is moved $\frac{\pi}{6}$ units to the right and 2 units upward.

9.
$$\left(\frac{-3\pi}{2},1\right)$$

10.
$$\left(\frac{\pi}{3}, -2\right)$$

Determine the point that lies midway between the two given points.

11.
$$(\pi,0)$$
 and $(2\pi,0)$

12.
$$\left(\frac{\pi}{6},1\right)$$
 and $\left(\frac{\pi}{2},1\right)$

Determine the amplitude, period, frequency, phase shift, and range for each function.

$$13. \ f(x) = \cos\left(x - \frac{\pi}{2}\right)$$

$$14. \quad f(x) = -2\sin\left(x + \frac{\pi}{3}\right)$$

15.
$$f(x) = 3\sin(4x)$$

$$16. \quad f(x) = -\cos\left(\frac{x}{2}\right) + 3$$

17.
$$f(x) = 5 - \sin(5x)$$

18.
$$f(x) = -2\cos\left(2x + \frac{\pi}{4}\right)$$

Determine the midline, amplitude, phase shift, period, frequency, and range for each function. Make a table with the five key points and sketch at least one cycle of the graph with the five key points from the table. (See example from notes.)

$$19. \quad f(x) = -\sin(x)$$

x	f(x)

midline_____

amplitude_____

phase shift______

period_____

frequency_____

range

20.
$$f(x) = \frac{1}{2}\cos(x)$$

х	f(x)

midline_____

phase shift_____

frequency_____

amplitude_____

period_____

range_____

$$21. \quad f(x) = \cos\left(x - \frac{\pi}{3}\right)$$

x	f(x)	

midline_____

phase shift______

frequency_____

amplitude_____

period_____

range____

22.
$$f(x) = \sin\left(x + \frac{\pi}{4}\right) + 2$$

x	f(x)

midline_____

phase shift_____

frequency_____

amplitude_____

period_____

range_____

23.
$$f(x) = 2\cos\left(x + \frac{\pi}{6}\right) + 1$$

х	f(x)

midline_____

phase shift______

frequency_____

amplitude_____

period_____

range_____

24.
$$f(x) = \cos(4x) + 2$$

x	f(x)

midline_____

amplitude_____

phase shift_____

period_____

frequency_____

range_____

$$25. \quad f(x) = 2 - \sin\left(\frac{x}{4}\right)$$

x	f(x)

midline_____

amplitude_____

phase shift_____

period_____

frequency_____

range_____

26. $f(x) = -\frac{1}{2}\sin\left[3\left(x - \frac{\pi}{6}\right)\right] - 1$

х	f(x)

midline

amplitude_____

phase shift_____

period_____

frequency_____

range_____

Write an equation of the form $y = A \sin[B(x - C)] + D$ whose graph is the given sine wave.

27.

Read and solve the following stories. Remember to define your variable and draw a picture or graph.

28. The number of hours of darkness in a coastal town can be modeled by

 $f(x) = 6.1\cos\left[\frac{\pi}{6}(x-2)\right] + 12.1$, where x is the month and x=1 corresponds to January. Approximate the number of hours of darkness in April, to the nearest tenth of an hour.

