Objective:

Let (a, b) be coordinates of points on the unit circle. For any given angle $x, \tan x=b / a$. This means that $y=\tan x$ is undefined whenever $a=0$. For any given angle $x, \cot x=a / b$. This means that $y=\cot x$ is undefined whenever $b=0$. Notice that it takes π radians for the values of the tangent and cotangent to make one complete cycle.

Graphing Tangent Functions:

The domain of $y=\tan x$ is the set of all real numbers except numbers of the form \qquad where k is an integer. The equations of the vertical asymptotes are \qquad where k is an integer.

Key points on the graph of $\boldsymbol{y}=\tan \boldsymbol{x}$:

x					
$y=\tan x$					

To graph $y=a \tan [b(x-c)]+d$:

1. Start with the three key points on the graph of $y=\tan x$ and the equations of the asymptotes.
2. Find three key points and the asymptotes for $y=a \tan [b(x-c)]+d$ by:
a. dividing each x-coordinate by b and adding c. (Treat the equations of the asymptotes like x-coordinates.)
b. multiplying each y-coordinate by a and adding d.
3. Sketch one cycle of $y=a \tan [b(x-c)]+d$ through the three new points and approaching the new asymptotes.
$\star \quad$ The period of $y=a \tan [b(x-c)]+d$ and $y=a \cot [b(x-c)]+d$ is \qquad rather than $2 \pi / b$.

Graphing Cotangent Functions:

The domain of $y=\cot x$ is the set of all real numbers except numbers of the form \qquad where k is an integer. The equations of the vertical asymptotes are \qquad where k is an integer.

Key points on the graph of $\boldsymbol{y}=\cot \boldsymbol{x}$:

x					
$y=\cot x$					

To graph $y=a \cot [b(x-c)]+d$:

1. Start with the three key points on the graph of $y=\cot x$ and the equations of the asymptotes.
2. Find three key points and the asymptotes for $y=a \cot [b(x-c)]+d$ by:
a. dividing each x-coordinate by b and adding c. (Treat the equations of the asymptotes like x-coordinates.)
b. multiplying each y-coordinate by a and adding d.
3. Sketch one cycle of $y=a \cot [b(x-c)]+d$ through the three new points and approaching the new asymptotes.

Examples: Graph the following functions. Find the period and the equations of the asymptotes of each. $f(x)=\tan \left(\frac{1}{2} x\right)$

\boldsymbol{x}	\boldsymbol{f}

$f(x)=2 \cot \left(x+\frac{\pi}{3}\right)$

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$

$f(x)=3 \tan \left(2 x+\frac{\pi}{2}\right)+1$

x	$f(x)$

$f(x)=2 \cot \left[3\left(x-\frac{\pi}{6}\right)\right]-1$

x	$f(x)$

