SM 3H

Date:

Section:

Objective:

Let (a,b) be coordinates of points on the unit circle. For any given angle x, $\tan x = b/a$. This means that $y = \tan x$ is undefined whenever a = 0. For any given angle x, $\cot x = a/b$. This means that $y = \cot x$ is undefined whenever b = 0. Notice that it takes π radians for the values of the tangent and cotangent to make one complete cycle.

Graphing Tangent Functions:

The domain of $y = \tan x$ is the set of all real numbers except numbers of the form______ where k is an integer. The equations of the vertical asymptotes are ______ where k is an integer.

Key points on the graph of $y = \tan x$:

To graph $y = a \tan[b(x-c)] + d$:

- 1. Start with the three key points on the graph of $y = \tan x$ and the equations of the asymptotes.
- 2. Find three key points and the asymptotes for $y = a \tan \left[b(x-c) \right] + d$ by:
 - a. dividing each *x*-coordinate by *b* and adding *c*. (Treat the equations of the asymptotes like x-coordinates.)
 - b. multiplying each *y*-coordinate by *a* and adding *d*.
- 3. Sketch one cycle of $y = a \tan[b(x-c)] + d$ through the three new points and approaching the new asymptotes.
- * The period of $y = a \tan[b(x-c)] + d$ and $y = a \cot[b(x-c)] + d$ is ______ rather than $2\pi/b$.

Graphing Cotangent Functions:

The domain of $y = \cot x$ is the set of all real numbers except numbers of the form _____ where *k* is an integer. The equations of the vertical asymptotes are _____ where *k* is an integer.

Key points on the graph of $y = \cot x$:

To graph $y = a \cot[b(x-c)] + d$:

- 1. Start with the three key points on the graph of $y = \cot x$ and the equations of the asymptotes.
- 2. Find three key points and the asymptotes for $y = a \cot[b(x-c)] + d$ by:
 - a. dividing each *x*-coordinate by *b* and adding *c*. (Treat the equations of the asymptotes like *x*-coordinates.)
 - b. multiplying each *y*-coordinate by *a* and adding *d*.
- 3. Sketch one cycle of $y = a \cot[b(x-c)] + d$ through the three new points and approaching the new asymptotes.

Examples: Graph the following functions. Find the period and the equations of the asymptotes of each. $f(x) = \tan\left(\frac{1}{2}x\right)$

$$f(x) = 2\cot\left(x + \frac{\pi}{3}\right)$$

$$f(x) = 3\tan\left(2x + \frac{\pi}{2}\right) + 1$$

$$f(x) = 2\cot\left[3\left(x - \frac{\pi}{6}\right)\right] - 1$$

x	f(x)

