Date:

Section:

Objective:

Review:

1. Find all the angles that satisfy the following function.
$2 \cos x+1=0$

Steps for solving trig equations:

1. Get the trig function by itself. Sometimes this means you need to factor. Sometimes this means you need to use an identity in place of a trig function so that all of the trig functions are the same.
2. Using " U " substitution, find all the angles that work by drawing the picture if it is on the unit circle or using a calculator.
3. Write the answers as equations equal to what is inside the trig function in the original equation.

Example: original equation is $\cos 2 x=\frac{1}{2}$ then the equations will be $2 x=\frac{\pi}{6}+2 \pi k$ and $2 x=\frac{11 \pi}{6}+2 \pi k$
4. Solve the answer equations (equations from step 3).
5. Use the equations from step 4 to find the angles that work in the given interval.
6. Remember to check answers because taking a square root or squaring can give you extraneous answers.

Examples: Find all angles in the interval $[0,2 \pi)$ that satisfy each equation. Round to the nearest hundredth.

1. $\sin (2 x)=\cos x$
2. $\sin \alpha-\cos \alpha=\frac{1}{\sqrt{2}}$

Find all angles in the interval $\left[0^{\circ}, 360^{\circ}\right)$ that satisfy each equation. Round approximations to the nearest tenth of a degree.
3. $\sin (2 \theta)=\frac{\sqrt{3}}{2}$
4. $\cos \left(\frac{x}{2}\right)=\frac{\sqrt{3}}{2}$
5. $\sin x \tan x+\sin x=0$
6. $\cos (2 x) \cos x-\sin (2 x) \sin x=\frac{\sqrt{3}}{2}$

