Date:

Section:

Objective:

The complex number $a+b i$ can be thought of as an ordered pair (a, b). We graph it on the complex plane where the horizontal axis is called the
\qquad axis and the vertical axis is called the \qquad axis.

Absolute Value or Modulus: $|a+b i|=$ \qquad . (The distance between the number and the origin on the complex plane.)

Examples: Graph each complex number and find its absolute value.
a) $5-i$
b) $-6+2 i$

Trigonometric Form of a Complex Number

If $z=a+b i$ is a complex number, then the trigonometric form of z is

$$
z=\ldots \text {, sometimes abbreviated } z=r \operatorname{cis} \theta \text {, }
$$

where r is called the \qquad and θ is called the \qquad , defined as the angle in standard position whose terminal side contains the point (a, b).

$$
a=\underline{\quad r=} \text { and } b=
$$

We usually use the smallest possible nonnegative angle for θ.
Examples: Write each complex number in trigonometric form. Express θ in degrees.
a) $-2 \sqrt{3}+2 i$
b) $5-4 i$

Example: Write the complex number $12\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)$ in the form $a+b i$.

Product and Quotient of Complex Numbers

If $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$, and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$, then

$$
\begin{aligned}
& z_{1} z_{2}= \\
& \frac{z_{1}}{z_{2}}=
\end{aligned}
$$

Examples: Find the product and quotient using trigonometric form.

$$
z_{1}=4\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right), \quad z_{2}=8\left(\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}\right)
$$

a) Find $z_{1} z_{2}$
b) Find $\frac{z_{1}}{z_{2}}$

Find the quotient for each pair of complex numbers, using trigonometric form. Write the answer in standard form for complex numbers.
a) $z_{1}=3+4 i, \quad z_{2}=-5+2 i$

Complex Conjugates

The conjugate of $r(\cos (\theta)+i \sin (\theta))$ is \qquad
A complex number times its conjugate equals \qquad -

$$
\text { Proof: } \begin{aligned}
& r(\cos \theta+i \sin \theta) \cdot r(\cos (-\theta)+i \sin (-\theta)) \\
& =r^{2}(\cos (\theta-\theta)+i \sin (\theta-\theta)) \\
= & r^{2}(\cos 0+i \sin 0) \\
= & r^{2}(1+0 i)=r^{2}
\end{aligned}
$$

Example: Find the product of the following and its conjugate: $6\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$.

