Objective:

Vocabulary

1. Scalar quantities:
2. Vector quantities:
3. Vector
4. Magnitude:

Notations:
5. Direction:

Notation:
6. Equal Vectors
7. Zero Vector:
8. Scalar Multiplication:

Vector Addition:

Resultant vector:

Steps for addition and subtraction ($A+B$ or $A-B$)

$A+B=$
$A-B=$

Steps for scalar multiplication (kA)

$2 A=$

$3 B=$

VECTORS have 2 parts

Horizontal component:

Vertical component:

Position Vector:

$\cos \theta=\square=\square$
r:

OR
$\left|A_{x}\right|=\quad\left|A_{y}\right|=$

Example: Find the magnitude of $\boldsymbol{V}_{\boldsymbol{x}}$ and $\boldsymbol{V}_{\boldsymbol{y}}$ if $r=|\boldsymbol{V}|=5.6$ and $\theta=22^{\circ}$

Example: Write the above vector in component form.

To find magnitude:

To find direction angle:

Example: Find the magnitude and direction of the vector $\boldsymbol{w}=\langle 2,-6\rangle$.

Example: Find the following operations with the vectors $\boldsymbol{w}=\langle-1,-3\rangle$ and $v=\langle 3,-4\rangle$.

1. $w+v$
2. $w-v$
3. $-8 v$
4. $3 w+4 v$

Dot Product:

5. $w \cdot v$

To find the angle between vectors:

Example: Find the smallest angle between the vectors $\boldsymbol{w}=\langle 1,3\rangle$ and $v=\langle 5,2\rangle$.

Vocabulary:

Parallel:

Perpendicular or orthogonal:

To find parallel vectors:

To find orthogonal vectors:

Examples: Are the following vectors parallel or orthogonal or neither?

1. $\boldsymbol{w}=\langle-2,3\rangle$ and $\boldsymbol{v}=\langle 6,4\rangle$
2. $\boldsymbol{w}=\langle 2,-5\rangle$ and $v=\langle-4,10\rangle$

To find unit vectors in linear combination:

The unit vectors are \qquad and \qquad

Example: Write the following vector in linear combination.
$\boldsymbol{w}=\langle-6,10\rangle$

