

Date:

Section:

Objective:

Vocabulary

- 1. Scalar quantities:
- 2. Vector quantities:
- 3. Vector
- 4. Magnitude:

Notations:

5. Direction:

Notation:

6. Equal Vectors

7. Zero Vector:

8. Scalar Multiplication:

Resultant vector:

A + B =

A – B =

Steps for scalar multiplication (kA)

2**A** =

3**B** =

VECTORS have 2 parts Horizontal component:

Vertical component:

Position Vector:

Direction Angle:

r:

OR

$$|A_x| = |A_y| =$$

Example: Find the magnitude of V_x and V_y if r = |V| = 5.6 and $\theta = 22^{\circ}$

Example: Write the above vector in component form.

To find magnitude:

To find direction angle:

Example: Find the magnitude and direction of the vector $w = \langle 2, -6 \rangle$.

Example: Find the following operations with the vectors $w = \langle -1, -3 \rangle$ and $v = \langle 3, -4 \rangle$.

- 1. w + v
- **2.** w v
- **3.** −8*v*
- 4. 3w + 4v

Dot Product:

5. $w \cdot v$

To find the angle between vectors:

Example: Find the smallest angle between the vectors $w = \langle 1, 3 \rangle$ and $v = \langle 5, 2 \rangle$.

Vocabulary:

Parallel:

Perpendicular or orthogonal:

To find parallel vectors:

To find orthogonal vectors:

Examples: Are the following vectors parallel or orthogonal or neither?

1. $w = \langle -2, 3 \rangle$ and $v = \langle 6, 4 \rangle$ 2. $w = \langle 2, -5 \rangle$ and $v = \langle -4, 10 \rangle$

To find unit vectors in linear combination:

The unit vectors are ______ and _____ and _____

Example: Write the following vector in linear combination. $w = \langle -6, 10 \rangle$