

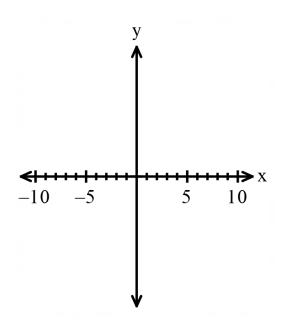
| SCORE: |  |
|--------|--|
| 1      |  |

2023-2024

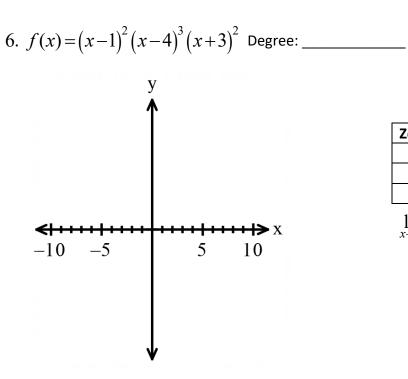
\_\_\_\_\_ Date \_\_\_\_

Name \_\_\_\_

Period \_\_\_\_\_


Describe the end behavior of each polynomial using limit notation, without using a graphing calculator.

1. 
$$f(x) = (x+3)(x-1)(2x-5)$$
  
2.  $f(x) = -(x+4)^2(x-2)$ 


3. 
$$f(x) = -2x^3 - 3x^2 + 36x - 58$$
  
4.  $f(x) = 3x^4 - 7x^3 + 16x^2 - 15x + 65$ 

State the degree and list the zeros of the polynomial. State the multiplicity of each zero and determine whether the graph crosses or touches the x-axis at the corresponding x-intercept. Then sketch a graph.

5. 
$$f(x) = -2x^{5}(x-7)$$
 Degree: \_\_\_\_\_



| Zero                | Multiplicity | Touch/Cross                   |
|---------------------|--------------|-------------------------------|
|                     |              |                               |
|                     |              |                               |
| $\lim_{x\to\infty}$ | f(x) =       | $\lim_{x \to +\infty} f(x) =$ |



| Zero | Multiplicity | Touch/Cross |
|------|--------------|-------------|
|      |              |             |
|      |              |             |
|      |              |             |

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) =$$

Multiply the expression using the polynomial identities.

7.  $(2x+3y)^2$  8.  $(2x-y)^3$ 

9. 
$$(x-5)(x+6)$$
 10.  $(4x+3i)(4x-3i)$ 

Factor the expressions using the polynomial identities.

11. 
$$64x^2 - 25$$
 12.  $x^3 - 125$ 

13. 
$$x^2 - 4x - 21$$
 14.  $-9x^2 + 39x + 30$ 

15. 
$$x^2 - 17x = -72$$
  
16.  $5x^2 - 3x + 1 = 0$ 

## Simplify the expression. Show work!

17. 
$$(x+5)(2x-1)-(3x^2-16x+3)$$

Divide f(x) by d(x) using long division. Write answer in fraction form. According to the Factor Theorem, is d(x) a factor of f(x)? Show work!

18. 
$$f(x) = 2x^3 - 3x^2 + 4x - 8$$
,  $d(x) = x - 1$  Yes or No

Divide using synthetic division. Write answer in fraction form. Show work!

19. 
$$\frac{2x^3 + 3x^2 + 4x - 10}{x + 1}$$

<u>Write an equation</u> in factored form and standard form for the function with the given zeros. Show work! (Remember an equation must include the f(x).)

20. x=3, x=-5, x=0

Factored Form: \_\_\_\_\_

Standard Form: \_\_\_\_\_

Factor to find the zeros of each of the following polynomials.

21.  $f(x) = -x^3 - 4x^2 - 3x$ 22.  $f(x) = x^2 - 6x - 16$ 

Use the Rational Zeros Theorem to write a list of all potential rational zeros. Show work!

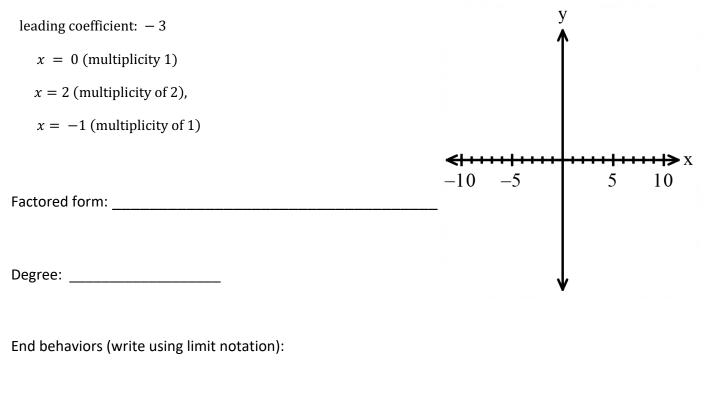
23. 
$$f(x) = 3x^3 + 43x^2 + 43x + 27$$

Using the given zero, find all of the zeros and write a factored form of f(x). Show work!

24. 3*i*, is a zero of 
$$f(x) = x^4 - x^3 + 7x^2 - 9x - 18$$

Write a polynomial function of minimum degree in standard form with real coefficients whose zeros include those listed. Show work!

25. x = -2, x = 1 + 2i


26. Find all of the real zeros of the function, finding exact values whenever possible. Identify each zero as rational or irrational. Write the function in factored form. Show work!

$$f(x) = x^3 + x^2 - 2x - 2$$

| Zeros | Rational/Irrational |
|-------|---------------------|
|       |                     |
|       |                     |
|       |                     |
|       |                     |

Factored form: \_\_\_\_\_

27. Write a polynomial function of minimum degree in <u>factored form</u> with real coefficients whose zeros and their multiplicities include those listed. Find the <u>degree of the polynomial</u>, the <u>x-intercepts</u>, <u>end behaviors</u> (using limit notation) and <u>sketch the graph</u>. Show work!



x-intercepts (write as ordered pair): \_\_\_\_\_

28. Use synthetic division to see if the given values are upper bounds, lower bounds, or neither one. Explain how you know.

$$f(x) = 2x^3 - 3x^2 + x - 4$$
  
a)  $k = -2$  b)  $k = 3$