Unit 8 Outline

Name \qquad Date \qquad
\qquad

Learning Target	Assessment	M.L. 4	M.L. 3	M.L. 2	M.L. 1
1. I can simplify trig. expressions using the fundamental identities.	8.1, 8.2 Worksheet 8.1-8.2 Quiz 8.1-8.6 Review Unit 8 Test				
2. I can prove trig. identities.	8.2, 8.3, 8.4, 8.5 Worksheet 8.1-8.2 Quiz 8.3-8.4 Quiz 8.1-8.6 Review Unit 8 Test				
3. I can use sum and difference identities to simplify trig. expressions.	8.3, 8.4 Worksheets 8.3-8.4 Quiz 8.1-8.6 Review Unit 8 Test				
4. I can use multiple angle identities to simplify trig. expressions.	8.5 Worksheet 8.5-8.6 Quiz 8.1-8.6 Review Unit 8 Test				

Mastery Level 4 = I've got this $-I$ can teach this to others. Mastery Level $\mathbf{3}$ = I understand - I can do this by myself.
Mastery Level $\mathbf{2}=\mathbf{I}$ mostly get it $-I$ can do this with help. Mastery Level $\mathbf{1}=I$ don't understand $-I$ cannot do this yet.

TRIGONOMETRIC IDENTITIES

RECIPROCAL IDENTITIES

$$
\begin{aligned}
& \cot x=\frac{1}{\tan x}=\frac{\cos x}{\sin x} \\
& \csc x=\frac{1}{\sin x} \\
& \sec x=\frac{1}{\cos x}
\end{aligned}
$$

PYTHAGOREAN IDENTITIES
$\sin ^{2} x+\cos ^{2} x=1$ $\sin ^{2} x=1-\cos ^{2} x$
$\cos ^{2} x=1-\sin ^{2} x$
$1+\tan ^{2} x=\sec ^{2} x$
$1+\cot ^{2} x=\csc ^{2} x$
SUM AND DIFFERENCE IDENTITIES
$\sin (x \pm y)=\sin x \cos y \pm \cos x \sin y$
$\cos (x+y)=\cos x \cos y \pm \sin x \sin y$
$\tan (x+y)=\frac{\tan x \pm \tan y}{1 \pm \tan x \tan y}$

DOUBLE-ANGLE IDENTITIES

$$
\begin{aligned}
\sin 2 x & =2 \sin x \cos x=\frac{2 \tan x}{1+\tan ^{2} x} \\
\cos 2 x & =\cos ^{2} x-\sin ^{2} x \\
& =2 \cos ^{2} x-1 \\
& =1-2 \sin ^{2} x=\frac{1-\tan ^{2} x}{1+\tan ^{2} x} \\
\tan 2 x & =\frac{2 \tan x}{1-\tan ^{2} x} \\
\cot 2 x & =\frac{\cot ^{2} x-1}{2 \cot x}
\end{aligned}
$$

HALF-ANGLE IDENTITIES
$\sin \frac{x}{2}= \pm \sqrt{\frac{1-\cos x}{2}}$
$\cos \frac{x}{2}= \pm \sqrt{\frac{1+\cos x}{2}}$
$\tan \frac{x}{2}= \pm \sqrt{\frac{1-\cos x}{1+\cos x}}=\frac{\sin x}{1+\cos x}=\frac{1-\cos x}{\sin x}$

TRIGONOMETRIC IDENTITIES

Complementary angles		$\sec \theta=\frac{1}{\cos \theta}$
$\sin \theta=\cos \left(90^{\circ}-\theta\right)$	$\rightarrow \sin 40^{\circ}=\cos 50^{\circ}$	$\operatorname{cosec} \theta=\frac{1}{\sin \theta}$ $\cos \theta=\sin \left(90^{\circ}-\theta\right)$ $\tan \theta=\cot \left(90^{\circ}-\theta\right)$
$\rightarrow \cos 15^{\circ}=\sin 75^{\circ}$	$\rightarrow \tan 30^{\circ}=\cot 60^{\circ}$	$\cot \theta=\frac{1}{\tan \theta}$

$$
\begin{aligned}
& \tan \theta=\frac{\sin \theta}{\cos \theta} \\
& \cot \theta=\frac{\cos \theta}{\sin \theta}
\end{aligned}
$$

$$
\begin{aligned}
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \tan ^{2} \theta+1=\sec ^{2} \theta \\
& 1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta
\end{aligned}
$$

$$
\begin{aligned}
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \frac{\sin ^{2} \theta}{\cos ^{2} \theta}+\frac{\cos ^{2} \theta}{\cos ^{2} \theta}=\frac{1}{\cos ^{2} \theta} \\
& \tan ^{2} \theta+1=\sec ^{2} \theta \\
& \frac{\sin ^{2} \theta}{\sin ^{2} \theta}+\frac{\cos ^{2} \theta}{\sin ^{2} \theta}=\frac{1}{\sin ^{2} \theta} \quad\left(\div \sin ^{2} \theta\right) \\
& 1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta
\end{aligned}
$$

