Zeros

Rational numbers: Numbers that can be written as a fraction

Irrational numbers: Numbers with decimals that go on forever but not in a pattern
Rational Zero Theorem: Find factors of constant \& put over factors of leading coefficient to find possible rational
zeros $\frac{p}{q} \pm 1, \pm 4, \pm \frac{1}{2}, \pm 2, \pm \frac{4}{3} \pm \frac{1}{3}, \pm \frac{1}{3} \pm \frac{1}{6}$
$f(x)=6 x^{2}+2 x-4$
Upper bounds: If answer to synthetic division are all positive,then no numbers above that work
Example:

Descartes' Rule of Signs: Find number if sign changes in original function, that tells you how many

Example:

 positive real numbers you have (subtract 2 for imaginary numbers)Find number if sign changes in function when x is negative, that tells you how many negative real numbers you have (subtract 2 for imaginary numbers)

Zeros

Rational numbers:

Rational Zero Theorem:

Example:

Upper bounds:
Lower bounds:

Example:

Descartes' Rule of Signs:
Example:

Complex Zeros

Definition of conjugate: When binomials are same numbers or variables, but opposite operation

Difference between x-intercepts and zeros: X-intercepts are all the real zeros. Zeros include all solutions for x, even imaginary.

Complex zeros always come in \qquad Pairs !

Complex Zeros

Definition of conjugate:

Difference between x-intercepts and zeros:

Complex zeros always come in \qquad !

